TPTP Problem File: ALG299-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG299-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : General Algebra
% Problem : An equational theory with no nontrivial finite models
% Version : Especial.
% English : A classical example of an equational theory with no nontrivial
% finite models (found idependently by Tarski, Jonsson, Skornyakov
% and others).
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names : austin1 [Sta09]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.44 v8.2.0, 0.60 v8.1.0, 0.50 v7.5.0, 0.75 v7.1.0, 0.67 v6.4.0, 0.75 v6.3.0, 0.67 v6.2.0, 0.83 v6.1.0, 0.80 v5.4.0, 0.75 v5.3.0, 0.67 v4.1.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 4 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : No finite models.
%------------------------------------------------------------------------------
cnf(sos01,axiom,
f(product(A,B)) = A ).
cnf(sos02,axiom,
g(product(A,B)) = B ).
cnf(sos03,axiom,
tptp1 != tptp0 ).
%------------------------------------------------------------------------------