TPTP Problem File: ALG293^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG293^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : General Algebra (Domain theory)
% Problem : TPS problem from PU-LAMBDA-MODEL-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1208 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 11 ( 11 equ; 0 cnn)
% Maximal formula atoms : 11 ( 11 avg)
% Number of connectives : 100 ( 1 ~; 0 |; 19 &; 62 @)
% ( 2 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 35 ( 0 ^; 22 !; 13 ?; 35 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cP,type,
cP: a > a > a ).
thf(cR,type,
cR: a > a ).
thf(cL,type,
cL: a > a ).
thf(cZ,type,
cZ: a ).
thf(cPU_X239_pme,conjecture,
( ( ( ( cL @ cZ )
= cZ )
& ( ( cR @ cZ )
= cZ )
& ! [Xx: a,Xy: a] :
( ( cL @ ( cP @ Xx @ Xy ) )
= Xx )
& ! [Xx: a,Xy: a] :
( ( cR @ ( cP @ Xx @ Xy ) )
= Xy )
& ! [Xt: a] :
( ( Xt != cZ )
<=> ( Xt
= ( cP @ ( cL @ Xt ) @ ( cR @ Xt ) ) ) )
& ! [X: a > $o] :
( ? [Xt: a] :
( ( X @ Xt )
& ! [Xu: a] :
( ( X @ Xu )
=> ( X @ ( cL @ Xu ) ) ) )
=> ( X @ cZ ) ) )
=> ! [X: a > $o,Xz: a] :
( ? [Xx: a] :
( ! [Xx_23: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( cL @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( cR @ Xv )
= Xx_23 ) ) )
=> ? [Xy: a] : ( X @ ( cP @ Xy @ Xx_23 ) ) )
& ? [Xz_2: a] : ( X @ ( cP @ ( cP @ Xx @ Xz ) @ Xz_2 ) ) )
<=> ? [Xx: a] :
( ! [Xx_24: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( cL @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( cR @ Xv )
= Xx_24 ) ) )
=> ( X @ Xx_24 ) )
& ? [Xx_26: a] :
( ! [Xx_25: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx_26 )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( cL @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( cR @ Xv )
= Xx_25 ) ) )
=> ? [Xy: a] :
! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( cL @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( cR @ Xv )
= ( cP @ Xy @ Xx_25 ) ) ) ) )
& ? [Xz_3: a] :
! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( cL @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( cR @ Xv )
= ( cP @ ( cP @ Xx_26 @ Xz ) @ Xz_3 ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------