TPTP Problem File: ALG291^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG291^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : General Algebra (Domain theory)
% Problem : TPS problem from PU-LAMBDA-MODEL-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1197 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 10 ( 10 equ; 0 cnn)
% Maximal formula atoms : 10 ( 10 avg)
% Number of connectives : 83 ( 1 ~; 0 |; 17 &; 49 @)
% ( 2 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 33 ( 0 ^; 25 !; 8 ?; 33 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cPU_X238B_pme,conjecture,
! [Z: a,P: a > a > a,L: a > a,R: a > a,X: a > $o] :
( ( ( ( L @ Z )
= Z )
& ( ( R @ Z )
= Z )
& ! [Xx: a,Xy: a] :
( ( L @ ( P @ Xx @ Xy ) )
= Xx )
& ! [Xx: a,Xy: a] :
( ( R @ ( P @ Xx @ Xy ) )
= Xy )
& ! [Xt: a] :
( ( Xt != Z )
<=> ( Xt
= ( P @ ( L @ Xt ) @ ( R @ Xt ) ) ) )
& ! [X0: a > $o] :
( ? [Xt: a] :
( ( X0 @ Xt )
& ! [Xu: a] :
( ( X0 @ Xu )
=> ( X0 @ ( L @ Xu ) ) ) )
=> ( X0 @ Z ) ) )
=> ! [X_0: a > $o,Xz: a] :
( ? [Xx: a] :
( ! [Xx_9: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( L @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( R @ Xv )
= Xx_9 ) ) )
=> ( X @ Xx_9 ) )
& ( X_0 @ ( P @ Xx @ Xz ) ) )
<=> ? [Xx: a] :
( ! [Xx_10: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( L @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( R @ Xv )
= Xx_10 ) ) )
=> ( X_0 @ Xx_10 ) )
& ? [Xx_12: a] :
( ! [Xx_11: a] :
( ! [X0: a > $o] :
( ( ( X0 @ Xx_12 )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( L @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( R @ Xv )
= Xx_11 ) ) )
=> ( X @ Xx_11 ) )
& ! [X0: a > $o] :
( ( ( X0 @ Xx )
& ! [Xz0: a] :
( ( X0 @ Xz0 )
=> ( X0 @ ( L @ Xz0 ) ) ) )
=> ? [Xv: a] :
( ( X0 @ Xv )
& ( ( R @ Xv )
= ( P @ Xx_12 @ Xz ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------