TPTP Problem File: ALG275^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG275^5 : TPTP v9.0.0. Bugfixed v5.3.0.
% Domain : General Algebra
% Problem : TPS problem from GRP-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0640 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 1.00 v8.1.0, 0.60 v7.5.0, 0.40 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v5.3.0
% Syntax : Number of formulae : 15 ( 6 unt; 8 typ; 6 def)
% Number of atoms : 24 ( 11 equ; 0 cnn)
% Maximal formula atoms : 2 ( 3 avg)
% Number of connectives : 31 ( 0 ~; 0 |; 4 &; 26 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 2 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 37 ( 37 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 0 con; 1-2 aty)
% Number of variables : 21 ( 9 ^; 8 !; 4 ?; 21 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v5.3.0 - Fixed tType to $tType from last bugfixes.
%------------------------------------------------------------------------------
thf(g_type,type,
g: $tType ).
thf(f_type,type,
f: g > g > g ).
thf(cGROUP2_type,type,
cGROUP2: ( g > g > g ) > g > $o ).
thf(cGROUP4_type,type,
cGROUP4: ( g > g > g ) > $o ).
thf(cGRP_ASSOC_type,type,
cGRP_ASSOC: ( g > g > g ) > $o ).
thf(cGRP_DIVISORS_type,type,
cGRP_DIVISORS: ( g > g > g ) > $o ).
thf(cGRP_LEFT_INVERSE_type,type,
cGRP_LEFT_INVERSE: ( g > g > g ) > g > $o ).
thf(cGRP_LEFT_UNIT_type,type,
cGRP_LEFT_UNIT: ( g > g > g ) > g > $o ).
thf(cGRP_ASSOC_def,definition,
( cGRP_ASSOC
= ( ^ [Xf: g > g > g] :
! [Xa: g,Xb: g,Xc: g] :
( ( Xf @ ( Xf @ Xa @ Xb ) @ Xc )
= ( Xf @ Xa @ ( Xf @ Xb @ Xc ) ) ) ) ) ).
thf(cGRP_DIVISORS_def,definition,
( cGRP_DIVISORS
= ( ^ [Xf: g > g > g] :
! [Xa: g,Xb: g] :
( ? [Xx: g] :
( ( Xf @ Xa @ Xx )
= Xb )
& ? [Xy: g] :
( ( Xf @ Xy @ Xa )
= Xb ) ) ) ) ).
thf(cGRP_LEFT_INVERSE_def,definition,
( cGRP_LEFT_INVERSE
= ( ^ [Xf: g > g > g,Xe: g] :
! [Xa: g] :
? [Xb: g] :
( ( Xf @ Xb @ Xa )
= Xe ) ) ) ).
thf(cGRP_LEFT_UNIT_def,definition,
( cGRP_LEFT_UNIT
= ( ^ [Xf: g > g > g,Xe: g] :
! [Xa: g] :
( ( Xf @ Xe @ Xa )
= Xa ) ) ) ).
thf(cGROUP2_def,definition,
( cGROUP2
= ( ^ [Xf: g > g > g,Xe: g] :
( ( cGRP_ASSOC @ Xf )
& ( cGRP_LEFT_UNIT @ Xf @ Xe )
& ( cGRP_LEFT_INVERSE @ Xf @ Xe ) ) ) ) ).
thf(cGROUP4_def,definition,
( cGROUP4
= ( ^ [Xf: g > g > g] :
( ( cGRP_ASSOC @ Xf )
& ( cGRP_DIVISORS @ Xf ) ) ) ) ).
thf(cEQUIV_02_04,conjecture,
( ! [Xf0: g > g > g] :
? [Xe: g] : ( cGROUP2 @ Xf0 @ Xe )
<=> ( cGROUP4 @ f ) ) ).
%------------------------------------------------------------------------------