TPTP Problem File: ALG238-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG238-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Algebra (Non-associative)
% Problem : Selfdistributive groupoids are symmetric-by-medial - part 2
% Version : Especial.
% English :
% Refs : [PS08] Phillips & Stanovsky (2008), Using Automated Theorem P
% : [Sta08a] Stanovsky (2008), Distributive Groupoids are Symmetri
% : [Sta08b] Stanovsky (2008), Email to G. Sutcliffe
% : [Sta08c] Stanovsky (2008), Distributive Groupoids are Symmetric
% Source : [Sta08b]
% Names : S08_2 [Sta08b]
% Status : Unsatisfiable
% Rating : 1.00 v4.0.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,mult(B,C)) = mult(mult(A,B),mult(A,C)) ).
cnf(c02,axiom,
mult(mult(A,B),C) = mult(mult(A,C),mult(B,C)) ).
cnf(goals,negated_conjecture,
mult(mult(mult(a,b),mult(c,d)),mult(mult(mult(a,b),mult(c,d)),mult(mult(a,c),mult(b,d)))) != mult(mult(a,c),mult(b,d)) ).
%------------------------------------------------------------------------------