TPTP Problem File: ALG236-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG236-1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Algebra (Non-associative)
% Problem : Short equational base for two varieties of groupoids - part 1b
% Version : Especial.
% English :
% Refs : [Phi06] Phillips (2006), Short Equational Bases for Two Variet
% : [PS08] Phillips & Stanovsky (2008), Using Automated Theorem P
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : P06_1b [Sta08]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.05 v8.2.0, 0.21 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.30 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.19 v6.0.0, 0.33 v5.5.0, 0.37 v5.4.0, 0.20 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.20 v5.0.0, 0.21 v4.1.0, 0.18 v4.0.1, 0.36 v4.0.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,mult(B,mult(A,B))) = mult(A,B) ).
cnf(c02,axiom,
mult(A,mult(B,mult(C,D))) = mult(C,mult(B,mult(A,D))) ).
cnf(c03,axiom,
mult(mult(A,mult(B,mult(C,B))),D) = mult(A,mult(D,mult(mult(C,B),D))) ).
cnf(goals,negated_conjecture,
mult(mult(a,b),mult(c,mult(d,e))) != mult(a,mult(c,mult(mult(d,b),e))) ).
%------------------------------------------------------------------------------