TPTP Problem File: ALG235-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG235-1 : TPTP v9.1.0. Released v4.0.0.
% Domain : Algebra (Non-associative)
% Problem : Short equational base for two varieties of groupoids - part 1a
% Version : Especial.
% English :
% Refs : [Phi06] Phillips (2006), Short Equational Bases for Two Variet
% : [PS08] Phillips & Stanovsky (2008), Using Automated Theorem P
% : [Sta08] Stanovsky (2008), Email to G. Sutcliffe
% Source : [Sta08]
% Names : P06_1a [Sta08]
% Status : Unsatisfiable
% Rating : 0.00 v8.2.0, 0.04 v8.1.0, 0.10 v7.5.0, 0.04 v7.4.0, 0.17 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.05 v6.4.0, 0.11 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.10 v5.5.0, 0.11 v5.4.0, 0.00 v5.2.0, 0.07 v5.0.0, 0.14 v4.1.0, 0.18 v4.0.1, 0.21 v4.0.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
cnf(c01,axiom,
mult(A,mult(B,mult(A,B))) = mult(A,B) ).
cnf(c02,axiom,
mult(A,mult(B,mult(C,D))) = mult(C,mult(B,mult(A,D))) ).
cnf(c03,axiom,
mult(mult(A,mult(B,mult(C,B))),D) = mult(A,mult(D,mult(mult(C,B),D))) ).
cnf(goals,negated_conjecture,
mult(a,mult(b,mult(a,mult(c,mult(d,c))))) != mult(a,mult(b,mult(d,c))) ).
%------------------------------------------------------------------------------