TPTP Problem File: ALG233+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG233+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : General Algebra
% Problem : Algebraic Operation on Subsets of Many Sorted Sets T14
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Mar97] Marasik (1997), Algebraic Operation on Subsets of Many
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t14_closure3 [Urb08]
% Status : Theorem
% Rating : 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.4.0
% Syntax : Number of formulae : 87 ( 13 unt; 0 def)
% Number of atoms : 318 ( 15 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 262 ( 31 ~; 1 |; 122 &)
% ( 16 <=>; 92 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 27 ( 25 usr; 1 prp; 0-4 aty)
% Number of functors : 12 ( 12 usr; 1 con; 0-4 aty)
% Number of variables : 212 ( 180 !; 32 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t14_closure3,conjecture,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( ! [D] :
( r2_hidden(D,C)
=> m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
=> ( ( E = a_3_0_closure3(A,B,C)
& D = k3_tarski(C) )
=> r6_pboole(A,k2_closure3(A,B,E),k2_closure3(A,B,D)) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_closure2,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_fraenkel(A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_mssubfam,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v3_relat_1(B)
=> v1_pre_circ(B,A) ) ) ).
fof(cc1_pboole,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ( v2_relat_1(B)
=> ~ v3_relat_1(B) ) ) ) ).
fof(cc2_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v2_closure2(C,A,B)
=> ( v1_fraenkel(C)
& v1_closure2(C,A,B) ) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_mssubfam,axiom,
! [A,B] :
( ( v1_pre_circ(B,A)
& m1_pboole(B,A) )
=> ! [C] :
( m4_pboole(C,A,B)
=> v1_pre_circ(C,A) ) ) ).
fof(cc2_pboole,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ( v3_relat_1(B)
=> ~ v2_relat_1(B) ) ) ) ).
fof(cc3_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v4_closure2(C,A,B)
=> ( v1_fraenkel(C)
& v3_closure2(C,A,B) ) ) ) ) ).
fof(cc4_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v4_closure2(C,A,B)
=> ( v1_fraenkel(C)
& v5_closure2(C,A,B) ) ) ) ) ).
fof(cc5_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v5_closure2(C,A,B)
=> ( ~ v1_xboole_0(C)
& v1_fraenkel(C) ) ) ) ) ).
fof(cc6_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v2_closure2(C,A,B)
=> ( v1_fraenkel(C)
& v6_closure2(C,A,B) ) ) ) ) ).
fof(cc7_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ( v6_closure2(C,A,B)
=> ( ~ v1_xboole_0(C)
& v1_fraenkel(C) ) ) ) ) ).
fof(d13_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_pboole(C,A)
=> ( r6_pboole(A,B,C)
<=> ( r2_pboole(A,B,C)
& r2_pboole(A,C,B) ) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( r1_tarski(A,B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(C,B) ) ) ).
fof(d4_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m4_pboole(D,A,B)
=> ( D = k2_closure3(A,B,C)
<=> ! [E] :
( r2_hidden(E,A)
=> k1_funct_1(D,E) = k3_tarski(a_4_0_closure3(A,B,C,E)) ) ) ) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = k3_tarski(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> ? [D] :
( r2_hidden(C,D)
& r2_hidden(D,A) ) ) ) ).
fof(d5_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_pboole(C,A)
=> ( r2_pboole(A,B,C)
<=> ! [D] :
( r2_hidden(D,A)
=> r1_tarski(k1_funct_1(B,D),k1_funct_1(C,D)) ) ) ) ) ).
fof(dt_k1_closure2,axiom,
$true ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> m4_pboole(k2_closure3(A,B,C),A,B) ) ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k6_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v1_closure2(k6_closure2(A,B),A,B)
& v2_closure2(k6_closure2(A,B),A,B)
& v3_closure2(k6_closure2(A,B),A,B)
& v4_closure2(k6_closure2(A,B),A,B)
& v5_closure2(k6_closure2(A,B),A,B)
& v6_closure2(k6_closure2(A,B),A,B)
& m1_subset_1(k6_closure2(A,B),k1_zfmisc_1(k1_closure2(A,B))) ) ) ).
fof(dt_m1_closure2,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure2(D,A,B,C)
=> m4_pboole(D,A,B) ) ) ).
fof(dt_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure3(D,A,B,C)
=> m1_pboole(D,A) ) ) ).
fof(dt_m1_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m4_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m4_pboole(C,A,B)
=> m1_pboole(C,A) ) ) ).
fof(existence_m1_closure2,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ? [D] : m1_closure2(D,A,B,C) ) ).
fof(existence_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ? [D] : m1_closure3(D,A,B,C) ) ).
fof(existence_m1_pboole,axiom,
! [A] :
? [B] : m1_pboole(B,A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m4_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ? [C] : m4_pboole(C,A,B) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( ~ v1_xboole_0(k1_closure2(A,B))
& v1_fraenkel(k1_closure2(A,B))
& v1_pralg_2(k1_closure2(A,B)) ) ) ).
fof(fc2_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ( v1_relat_1(k2_closure3(A,B,C))
& v3_relat_1(k2_closure3(A,B,C))
& v1_funct_1(k2_closure3(A,B,C))
& v1_pre_circ(k2_closure3(A,B,C),A) ) ) ).
fof(fc2_pboole,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v2_relat_1(B)
& m1_pboole(B,A)
& m1_subset_1(C,A) )
=> ~ v1_xboole_0(k1_funct_1(B,C)) ) ).
fof(fraenkel_a_3_0_closure3,axiom,
! [A,B,C,D] :
( m1_pboole(C,B)
=> ( r2_hidden(A,a_3_0_closure3(B,C,D))
<=> ? [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(B,C)))
& A = k2_closure3(B,C,E)
& r2_hidden(E,D) ) ) ) ).
fof(fraenkel_a_4_0_closure3,axiom,
! [A,B,C,D,E] :
( ( m1_pboole(C,B)
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(B,C))) )
=> ( r2_hidden(A,a_4_0_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure2(F,B,C,k6_closure2(B,C))
& A = k1_funct_1(F,E)
& r2_hidden(F,D) ) ) ) ).
fof(fraenkel_a_4_4_closure3,axiom,
! [A,B,C,D,E] :
( ( m1_pboole(C,B)
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(B,C))) )
=> ( r2_hidden(A,a_4_4_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure3(F,B,C,k6_closure2(B,C))
& A = k1_funct_1(F,E)
& r2_hidden(F,D) ) ) ) ).
fof(fraenkel_a_4_5_closure3,axiom,
! [A,B,C,D,E] :
( ( m1_pboole(C,B)
& m1_subset_1(E,k1_zfmisc_1(k1_closure2(B,C))) )
=> ( r2_hidden(A,a_4_5_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure3(F,B,C,k6_closure2(B,C))
& A = k1_funct_1(F,D)
& r2_hidden(F,E) ) ) ) ).
fof(fraenkel_a_4_6_closure3,axiom,
! [A,B,C,D,E] :
( m1_pboole(C,B)
=> ( r2_hidden(A,a_4_6_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure3(F,B,C,k6_closure2(B,C))
& A = k1_funct_1(F,E)
& r2_hidden(F,k3_tarski(D)) ) ) ) ).
fof(rc1_closure2,axiom,
? [A] :
( v1_xboole_0(A)
& v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A)
& v1_finset_1(A)
& v1_fraenkel(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_mssubfam,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ? [C] :
( m4_pboole(C,A,B)
& v1_relat_1(C)
& v3_relat_1(C)
& v1_funct_1(C)
& v1_pre_circ(C,A) ) ) ).
fof(rc1_pboole,axiom,
? [A] :
( v1_relat_1(A)
& v3_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ? [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& ~ v1_xboole_0(C)
& v1_fraenkel(C)
& v1_pralg_2(C) ) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_pboole,axiom,
! [A] :
? [B] :
( m1_pboole(B,A)
& v1_relat_1(B)
& v3_relat_1(B)
& v1_funct_1(B) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ? [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& v1_xboole_0(C)
& v1_relat_1(C)
& v1_funct_1(C)
& v2_funct_1(C)
& v1_finset_1(C)
& v1_fraenkel(C) ) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_pboole,axiom,
! [A] :
? [B] :
( m1_pboole(B,A)
& v1_relat_1(B)
& v2_relat_1(B)
& v1_funct_1(B) ) ).
fof(rc4_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ? [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& ~ v1_xboole_0(C)
& v1_fraenkel(C)
& v1_pralg_2(C)
& v1_closure2(C,A,B)
& v2_closure2(C,A,B)
& v3_closure2(C,A,B)
& v4_closure2(C,A,B)
& v5_closure2(C,A,B)
& v6_closure2(C,A,B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v3_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v2_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc5_pboole,axiom,
! [A,B] :
( ( v2_relat_1(B)
& m1_pboole(B,A) )
=> ? [C] :
( m4_pboole(C,A,B)
& v1_relat_1(C)
& v2_relat_1(C)
& v1_funct_1(C) ) ) ).
fof(redefinition_k6_closure2,axiom,
! [A,B] :
( m1_pboole(B,A)
=> k6_closure2(A,B) = k1_closure2(A,B) ) ).
fof(redefinition_m1_closure2,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure2(D,A,B,C)
<=> m1_subset_1(D,C) ) ) ).
fof(redefinition_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure3(D,A,B,C)
<=> m1_subset_1(D,C) ) ) ).
fof(redefinition_r6_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ( r6_pboole(A,B,C)
<=> B = C ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r2_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> r2_pboole(A,B,B) ) ).
fof(reflexivity_r6_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> r6_pboole(A,B,B) ) ).
fof(symmetry_r6_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ( r6_pboole(A,B,C)
=> r6_pboole(A,C,B) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------