TPTP Problem File: ALG227+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG227+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : General Algebra
% Problem : Algebraic Operation on Subsets of Many Sorted Sets T08
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Mar97] Marasik (1997), Algebraic Operation on Subsets of Many
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t8_closure3 [Urb08]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.13 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.17 v6.2.0, 0.24 v6.1.0, 0.23 v6.0.0, 0.22 v5.4.0, 0.21 v5.3.0, 0.26 v5.2.0, 0.05 v5.1.0, 0.10 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0
% Syntax : Number of formulae : 29 ( 9 unt; 0 def)
% Number of atoms : 72 ( 8 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 54 ( 11 ~; 1 |; 22 &)
% ( 3 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 11 ( 9 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 41 ( 31 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t8_closure3,conjecture,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> ( ~ r2_hidden(C,k1_closure3(A,B))
=> k1_funct_1(B,C) = k1_xboole_0 ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_closure2,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_fraenkel(A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(d3_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( C = k1_closure3(A,B)
<=> C = a_2_0_closure3(A,B) ) ) ) ).
fof(dt_k1_closure3,axiom,
$true ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_m1_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_pboole,axiom,
! [A] :
? [B] : m1_pboole(B,A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fraenkel_a_2_0_closure3,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(B)
& m1_pboole(C,B) )
=> ( r2_hidden(A,a_2_0_closure3(B,C))
<=> ? [D] :
( m1_subset_1(D,B)
& A = D
& k1_funct_1(C,D) != k1_xboole_0 ) ) ) ).
fof(rc1_closure2,axiom,
? [A] :
( v1_xboole_0(A)
& v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A)
& v1_finset_1(A)
& v1_fraenkel(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------