TPTP Problem File: ALG217+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG217+2 : TPTP v9.0.0. Released v3.4.0.
% Domain : General Algebra
% Problem : Linear Independence in Right Module over Domain T11
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t11_rmod_5 [Urb08]
% Status : Theorem
% Rating : 0.94 v9.0.0, 0.97 v7.1.0, 0.96 v7.0.0, 0.97 v6.4.0, 0.96 v6.2.0, 1.00 v3.4.0
% Syntax : Number of formulae : 3457 (1089 unt; 0 def)
% Number of atoms : 20201 (2549 equ)
% Maximal formula atoms : 49 ( 5 avg)
% Number of connectives : 18813 (2069 ~; 133 |;10868 &)
% ( 516 <=>;5227 =>; 0 <=; 0 <~>)
% Maximal formula depth : 29 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 215 ( 213 usr; 1 prp; 0-4 aty)
% Number of functors : 561 ( 561 usr; 230 con; 0-8 aty)
% Number of variables : 7551 (7173 !; 378 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Bushy version: includes all articles that contribute axioms to the
% Normal version.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+4.ax').
include('Axioms/SET007/SET007+5.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+31.ax').
include('Axioms/SET007/SET007+34.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+40.ax').
include('Axioms/SET007/SET007+48.ax').
include('Axioms/SET007/SET007+54.ax').
include('Axioms/SET007/SET007+55.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+210.ax').
include('Axioms/SET007/SET007+211.ax').
include('Axioms/SET007/SET007+212.ax').
include('Axioms/SET007/SET007+213.ax').
include('Axioms/SET007/SET007+224.ax').
include('Axioms/SET007/SET007+241.ax').
include('Axioms/SET007/SET007+276.ax').
include('Axioms/SET007/SET007+278.ax').
include('Axioms/SET007/SET007+279.ax').
include('Axioms/SET007/SET007+280.ax').
%------------------------------------------------------------------------------
fof(fraenkel_a_2_0_rmod_5,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B)
& ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B) )
=> ( r2_hidden(A,a_2_0_rmod_5(B,C))
<=> ? [D] :
( m2_rmod_4(D,B,C,k1_subset_1(u1_struct_0(C)))
& A = k5_rmod_4(B,C,D) ) ) ) ).
fof(fraenkel_a_3_0_rmod_5,axiom,
! [A,B,C,D] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B)
& ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B)
& m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C))) )
=> ( r2_hidden(A,a_3_0_rmod_5(B,C,D))
<=> ? [E] :
( m2_rmod_4(E,B,C,D)
& A = k5_rmod_4(B,C,E) ) ) ) ).
fof(dt_k1_rmod_5,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A)
& ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B))) )
=> ( v3_vectsp_2(k1_rmod_5(A,B,C),A)
& m1_rmod_2(k1_rmod_5(A,B,C),A,B) ) ) ).
fof(d1_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ( v1_rmod_5(C,A,B)
<=> ! [D] :
( m2_rmod_4(D,A,B,C)
=> ( k5_rmod_4(A,B,D) = k1_rlvect_1(B)
=> k2_rmod_4(A,B,D) = k1_xboole_0 ) ) ) ) ) ) ).
fof(t1_rmod_5,axiom,
$true ).
fof(t2_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( ( r1_tarski(C,D)
& v1_rmod_5(D,A,B) )
=> v1_rmod_5(C,A,B) ) ) ) ) ) ).
fof(t3_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ~ ( k1_rlvect_1(A) != k2_group_1(A)
& v1_rmod_5(C,A,B)
& r2_hidden(k1_rlvect_1(B),C) ) ) ) ) ).
fof(t4_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> v1_rmod_5(k1_subset_1(u1_struct_0(B)),A,B) ) ) ).
fof(t5_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(B))
=> ( v1_rmod_5(k8_rlvect_2(B,C,D),A,B)
=> ( k1_rlvect_1(A) = k2_group_1(A)
| ( C != k1_rlvect_1(B)
& D != k1_rlvect_1(B) ) ) ) ) ) ) ) ).
fof(t6_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ( k1_rlvect_1(A) != k2_group_1(A)
=> ( ~ v1_rmod_5(k8_rlvect_2(B,C,k1_rlvect_1(B)),A,B)
& ~ v1_rmod_5(k8_rlvect_2(B,k1_rlvect_1(B),C),A,B) ) ) ) ) ) ).
fof(d2_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( ( v3_vectsp_2(D,A)
& m1_rmod_2(D,A,B) )
=> ( D = k1_rmod_5(A,B,C)
<=> u1_struct_0(D) = a_3_0_rmod_5(A,B,C) ) ) ) ) ) ).
fof(t7_rmod_5,axiom,
$true ).
fof(t8_rmod_5,axiom,
$true ).
fof(t9_rmod_5,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C)))
=> ( r1_rlvect_1(k1_rmod_5(B,C,D),A)
<=> ? [E] :
( m2_rmod_4(E,B,C,D)
& A = k5_rmod_4(B,C,E) ) ) ) ) ) ).
fof(t10_rmod_5,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C)))
=> ( r2_hidden(A,D)
=> r1_rlvect_1(k1_rmod_5(B,C,D),A) ) ) ) ) ).
fof(t11_rmod_5,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> k1_rmod_5(A,B,k1_subset_1(u1_struct_0(B))) = k1_rmod_2(A,B) ) ) ).
%------------------------------------------------------------------------------