TPTP Problem File: ALG216+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ALG216+1 : TPTP v9.0.0. Released v3.4.0.
% Domain   : General Algebra
% Problem  : Linear Independence in Right Module over Domain T06
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t6_rmod_5 [Urb08]

% Status   : Theorem
% Rating   : 0.27 v9.0.0, 0.31 v8.2.0, 0.25 v8.1.0, 0.28 v7.4.0, 0.13 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.25 v6.2.0, 0.32 v6.1.0, 0.40 v6.0.0, 0.35 v5.5.0, 0.56 v5.4.0, 0.57 v5.3.0, 0.59 v5.2.0, 0.50 v5.1.0, 0.48 v5.0.0, 0.50 v4.1.0, 0.57 v4.0.0, 0.58 v3.7.0, 0.55 v3.5.0, 0.58 v3.4.0
% Syntax   : Number of formulae    :   53 (  21 unt;   0 def)
%            Number of atoms       :  151 (   9 equ)
%            Maximal formula atoms :   23 (   2 avg)
%            Number of connectives :  130 (  32   ~;   2   |;  62   &)
%                                         (   1 <=>;  33  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   26 (  24 usr;   1 prp; 0-3 aty)
%            Number of functors    :    7 (   7 usr;   1 con; 0-3 aty)
%            Number of variables   :   78 (  60   !;  18   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t6_rmod_5,conjecture,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v3_rlvect_1(A)
        & v4_rlvect_1(A)
        & v5_rlvect_1(A)
        & v6_rlvect_1(A)
        & v4_group_1(A)
        & v6_vectsp_1(A)
        & v7_vectsp_1(A)
        & v8_vectsp_1(A)
        & l3_vectsp_1(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v3_rlvect_1(B)
            & v4_rlvect_1(B)
            & v5_rlvect_1(B)
            & v6_rlvect_1(B)
            & v5_vectsp_2(B,A)
            & l1_vectsp_2(B,A) )
         => ! [C] :
              ( m1_subset_1(C,u1_struct_0(B))
             => ( k1_rlvect_1(A) != k2_group_1(A)
               => ( ~ v1_rmod_5(k8_rlvect_2(B,C,k1_rlvect_1(B)),A,B)
                  & ~ v1_rmod_5(k8_rlvect_2(B,k1_rlvect_1(B),C),A,B) ) ) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(fc1_xboole_0,axiom,
    v1_xboole_0(k1_xboole_0) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(existence_l1_vectsp_1,axiom,
    ? [A] : l1_vectsp_1(A) ).

fof(dt_l1_vectsp_1,axiom,
    ! [A] :
      ( l1_vectsp_1(A)
     => l1_group_1(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : v1_xboole_0(A) ).

fof(rc2_rlvect_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B)
          & v1_finset_1(B) ) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ v1_xboole_0(A) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B) ) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).

fof(existence_l1_group_1,axiom,
    ? [A] : l1_group_1(A) ).

fof(existence_l1_rlvect_1,axiom,
    ? [A] : l1_rlvect_1(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : l1_struct_0(A) ).

fof(existence_l2_struct_0,axiom,
    ? [A] : l2_struct_0(A) ).

fof(existence_l2_vectsp_1,axiom,
    ? [A] : l2_vectsp_1(A) ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_l1_group_1,axiom,
    ! [A] :
      ( l1_group_1(A)
     => l1_struct_0(A) ) ).

fof(dt_l1_rlvect_1,axiom,
    ! [A] :
      ( l1_rlvect_1(A)
     => l2_struct_0(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l2_struct_0,axiom,
    ! [A] :
      ( l2_struct_0(A)
     => l1_struct_0(A) ) ).

fof(dt_l2_vectsp_1,axiom,
    ! [A] :
      ( l2_vectsp_1(A)
     => ( l1_vectsp_1(A)
        & l2_struct_0(A) ) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ~ v1_xboole_0(u1_struct_0(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( l1_struct_0(A)
      & ~ v3_struct_0(A) ) ).

fof(rc4_struct_0,axiom,
    ? [A] :
      ( l2_struct_0(A)
      & ~ v3_struct_0(A) ) ).

fof(rc9_vectsp_2,axiom,
    ! [A] :
      ( l1_struct_0(A)
     => ? [B] :
          ( l1_vectsp_2(B,A)
          & ~ v3_struct_0(B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(commutativity_k8_rlvect_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => k8_rlvect_2(A,B,C) = k8_rlvect_2(A,C,B) ) ).

fof(existence_l1_vectsp_2,axiom,
    ! [A] :
      ( l1_struct_0(A)
     => ? [B] : l1_vectsp_2(B,A) ) ).

fof(existence_l3_vectsp_1,axiom,
    ? [A] : l3_vectsp_1(A) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(redefinition_k8_rlvect_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => k8_rlvect_2(A,B,C) = k2_tarski(B,C) ) ).

fof(dt_k1_rlvect_1,axiom,
    ! [A] :
      ( l2_struct_0(A)
     => m1_subset_1(k1_rlvect_1(A),u1_struct_0(A)) ) ).

fof(dt_k2_group_1,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_group_1(A) )
     => m1_subset_1(k2_group_1(A),u1_struct_0(A)) ) ).

fof(dt_k8_rlvect_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => ( v1_finset_1(k8_rlvect_2(A,B,C))
        & m1_subset_1(k8_rlvect_2(A,B,C),k1_zfmisc_1(u1_struct_0(A))) ) ) ).

fof(dt_l1_vectsp_2,axiom,
    ! [A] :
      ( l1_struct_0(A)
     => ! [B] :
          ( l1_vectsp_2(B,A)
         => l1_rlvect_1(B) ) ) ).

fof(dt_l3_vectsp_1,axiom,
    ! [A] :
      ( l3_vectsp_1(A)
     => ( l1_rlvect_1(A)
        & l2_vectsp_1(A) ) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(t5_rmod_5,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v3_rlvect_1(A)
        & v4_rlvect_1(A)
        & v5_rlvect_1(A)
        & v6_rlvect_1(A)
        & v4_group_1(A)
        & v6_vectsp_1(A)
        & v7_vectsp_1(A)
        & v8_vectsp_1(A)
        & l3_vectsp_1(A) )
     => ! [B] :
          ( ( ~ v3_struct_0(B)
            & v3_rlvect_1(B)
            & v4_rlvect_1(B)
            & v5_rlvect_1(B)
            & v6_rlvect_1(B)
            & v5_vectsp_2(B,A)
            & l1_vectsp_2(B,A) )
         => ! [C] :
              ( m1_subset_1(C,u1_struct_0(B))
             => ! [D] :
                  ( m1_subset_1(D,u1_struct_0(B))
                 => ( v1_rmod_5(k8_rlvect_2(B,C,D),A,B)
                   => ( k1_rlvect_1(A) = k2_group_1(A)
                      | ( C != k1_rlvect_1(B)
                        & D != k1_rlvect_1(B) ) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------