TPTP Problem File: ALG215+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG215+2 : TPTP v9.0.0. Released v3.4.0.
% Domain : General Algebra
% Problem : Linear Independence in Right Module over Domain T04
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t4_rmod_5 [Urb08]
% Status : Theorem
% Rating : 0.82 v9.0.0, 0.83 v8.2.0, 0.89 v7.5.0, 0.94 v7.4.0, 0.93 v7.1.0, 0.87 v7.0.0, 0.90 v6.4.0, 0.88 v6.3.0, 0.92 v6.2.0, 0.96 v6.1.0, 0.97 v6.0.0, 0.96 v5.4.0, 1.00 v5.2.0, 0.95 v5.0.0, 0.96 v4.1.0, 1.00 v3.4.0
% Syntax : Number of formulae : 3447 (1087 unt; 0 def)
% Number of atoms : 20015 (2539 equ)
% Maximal formula atoms : 49 ( 5 avg)
% Number of connectives : 18610 (2042 ~; 132 |;10721 &)
% ( 512 <=>;5203 =>; 0 <=; 0 <~>)
% Maximal formula depth : 29 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 215 ( 213 usr; 1 prp; 0-4 aty)
% Number of functors : 559 ( 559 usr; 230 con; 0-8 aty)
% Number of variables : 7520 (7145 !; 375 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Bushy version: includes all articles that contribute axioms to the
% Normal version.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
include('Axioms/SET007/SET007+0.ax').
include('Axioms/SET007/SET007+1.ax').
include('Axioms/SET007/SET007+2.ax').
include('Axioms/SET007/SET007+3.ax').
include('Axioms/SET007/SET007+4.ax').
include('Axioms/SET007/SET007+5.ax').
include('Axioms/SET007/SET007+6.ax').
include('Axioms/SET007/SET007+7.ax').
include('Axioms/SET007/SET007+9.ax').
include('Axioms/SET007/SET007+10.ax').
include('Axioms/SET007/SET007+11.ax').
include('Axioms/SET007/SET007+14.ax').
include('Axioms/SET007/SET007+16.ax').
include('Axioms/SET007/SET007+20.ax').
include('Axioms/SET007/SET007+26.ax').
include('Axioms/SET007/SET007+31.ax').
include('Axioms/SET007/SET007+34.ax').
include('Axioms/SET007/SET007+35.ax').
include('Axioms/SET007/SET007+40.ax').
include('Axioms/SET007/SET007+48.ax').
include('Axioms/SET007/SET007+54.ax').
include('Axioms/SET007/SET007+55.ax').
include('Axioms/SET007/SET007+200.ax').
include('Axioms/SET007/SET007+210.ax').
include('Axioms/SET007/SET007+211.ax').
include('Axioms/SET007/SET007+212.ax').
include('Axioms/SET007/SET007+213.ax').
include('Axioms/SET007/SET007+224.ax').
include('Axioms/SET007/SET007+241.ax').
include('Axioms/SET007/SET007+276.ax').
include('Axioms/SET007/SET007+278.ax').
include('Axioms/SET007/SET007+279.ax').
include('Axioms/SET007/SET007+280.ax').
%------------------------------------------------------------------------------
fof(dt_k1_rmod_5,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A)
& ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B))) )
=> ( v3_vectsp_2(k1_rmod_5(A,B,C),A)
& m1_rmod_2(k1_rmod_5(A,B,C),A,B) ) ) ).
fof(d1_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ( v1_rmod_5(C,A,B)
<=> ! [D] :
( m2_rmod_4(D,A,B,C)
=> ( k5_rmod_4(A,B,D) = k1_rlvect_1(B)
=> k2_rmod_4(A,B,D) = k1_xboole_0 ) ) ) ) ) ) ).
fof(t1_rmod_5,axiom,
$true ).
fof(t2_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( ( r1_tarski(C,D)
& v1_rmod_5(D,A,B) )
=> v1_rmod_5(C,A,B) ) ) ) ) ) ).
fof(t3_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ~ ( k1_rlvect_1(A) != k2_group_1(A)
& v1_rmod_5(C,A,B)
& r2_hidden(k1_rlvect_1(B),C) ) ) ) ) ).
fof(t4_rmod_5,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> v1_rmod_5(k1_subset_1(u1_struct_0(B)),A,B) ) ) ).
%------------------------------------------------------------------------------