TPTP Problem File: ALG211+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG211+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : General Algebra
% Problem : Vector spaces and bases
% Version : [Shu96] axioms : Especial.
% English :
% Refs : [BG80] Bishop & Goldberg (1980), Tensor Analysis on Manifolds
% : [Shu96] Shults (1996), Email to Geoff Sutcliffe
% Source : [Shu96]
% Names :
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.06 v8.2.0, 0.07 v7.5.0, 0.05 v7.4.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.05 v3.7.0, 0.00 v3.1.0
% Syntax : Number of formulae : 6 ( 0 unt; 0 def)
% Number of atoms : 19 ( 0 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 13 ( 0 ~; 0 |; 6 &)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 17 ( 13 !; 4 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
%----The defintion of a basis
fof(basis_of,axiom,
! [B,V] :
( basis_of(B,V)
=> ( lin_ind_subset(B,V)
& a_subset_of(B,vec_to_class(V)) ) ) ).
%----Proposition 2.2.5 from Bishop and Goldberg
fof(bg_2_2_5,axiom,
! [S,T,V] :
( ( lin_ind_subset(S,V)
& basis_of(T,V) )
=> ? [U] :
( a_subset_of(U,T)
& basis_of(union(S,U),V) ) ) ).
%----The first Remark on page 63 of Bishop and Goldberg
fof(bg_remark_63_a,axiom,
! [A] :
( a_vector_space(A)
=> ? [B] : basis_of(B,A) ) ).
%----The definition of a subspace
fof(bg_2_4_a,axiom,
! [A,B] :
( a_vector_subspace_of(A,B)
=> a_vector_space(A) ) ).
%----Proposition 2.4.2 in Bishop and Goldberg
fof(bg_2_4_2,axiom,
! [W,V,E] :
( ( a_vector_subspace_of(W,V)
& a_subset_of(E,vec_to_class(W)) )
=> ( lin_ind_subset(E,W)
<=> lin_ind_subset(E,V) ) ) ).
fof(bg_2_4_3,conjecture,
! [W,V] :
( ( a_vector_subspace_of(W,V)
& a_vector_space(V) )
=> ? [E,F] :
( basis_of(union(E,F),V)
& basis_of(E,W) ) ) ).
%------------------------------------------------------------------------------