TPTP Problem File: ALG013-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG013-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : General Algebra
% Problem : Partition a monoid into 4 partitions
% Version : [Cla03] axioms.
% English : If C1,C2,D1,D2 is a partition of a monoid M, we cannot have
% Ci * Ci subset D1 u D2 and Dj * Dj subset C1 u C2.
% Refs : [Cla03] Claessen (2003), Email to G. Sutcliffe
% Source : [Cla03]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v6.4.0, 0.93 v6.3.0, 0.91 v6.2.0, 1.00 v2.7.0
% Syntax : Number of clauses : 16 ( 5 unt; 5 nHn; 14 RR)
% Number of literals : 37 ( 1 equ; 20 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 18 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Originally from Thierry Coquand
%--------------------------------------------------------------------------
cnf(f_is_associative,axiom,
f(X,f(Y,Z)) = f(f(X,Y),Z) ).
cnf(partitions_union,axiom,
( c2(X)
| c1(X)
| d1(X)
| d2(X) ) ).
cnf(partitions_exclusive_c1_c2,hypothesis,
( ~ c1(X)
| ~ c2(X) ) ).
cnf(partitions_exclusive_c1_d1,hypothesis,
( ~ c1(X)
| ~ d1(X) ) ).
cnf(partitions_exclusive_c1_d2,hypothesis,
( ~ c1(X)
| ~ d2(X) ) ).
cnf(partitions_exclusive_c2_d1,hypothesis,
( ~ c2(X)
| ~ d1(X) ) ).
cnf(partitions_exclusive_c2_d2,hypothesis,
( ~ c2(X)
| ~ d2(X) ) ).
cnf(partitions_exclusive_d1_d2,hypothesis,
( ~ d1(X)
| ~ d2(X) ) ).
cnf(partition_c1_not_empty,hypothesis,
c1(a1) ).
cnf(partition_c2_not_empty,hypothesis,
c2(a2) ).
cnf(partition_d1_not_empty,hypothesis,
d1(a3) ).
cnf(partition_d2_not_empty,hypothesis,
d2(a4) ).
cnf(conjecture_1,negated_conjecture,
( d2(f(X,Y))
| d1(f(X,Y))
| ~ c1(X)
| ~ c1(Y) ) ).
cnf(conjecture_2,negated_conjecture,
( d2(f(X,Y))
| d1(f(X,Y))
| ~ c2(X)
| ~ c2(Y) ) ).
cnf(conjecture_3,negated_conjecture,
( c2(f(X,Y))
| c1(f(X,Y))
| ~ d1(X)
| ~ d1(Y) ) ).
cnf(conjecture_4,negated_conjecture,
( c2(f(X,Y))
| c1(f(X,Y))
| ~ d2(X)
| ~ d2(Y) ) ).
%--------------------------------------------------------------------------