TPTP Problem File: ALG012-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG012-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : General Algebra
% Problem : Partition a monoid into 3 partitions
% Version : [Cla03] axioms.
% English : If C,D1,D2 is a partition of a monoid M, we cannot have
% C * C subset D1 u D2 and Dj * Dj subset C.
% Refs : [Cla03] Claessen (2003), Email to G. Sutcliffe
% Source : [Cla03]
% Names :
% Status : Unsatisfiable
% Rating : 0.20 v8.2.0, 0.19 v8.1.0, 0.16 v7.5.0, 0.26 v7.4.0, 0.29 v7.3.0, 0.08 v7.0.0, 0.20 v6.4.0, 0.33 v6.3.0, 0.18 v6.2.0, 0.43 v6.0.0, 0.40 v5.5.0, 0.55 v5.4.0, 0.60 v5.3.0, 0.61 v5.2.0, 0.47 v5.0.0, 0.46 v4.0.1, 0.36 v3.7.0, 0.30 v3.5.0, 0.27 v3.4.0, 0.42 v3.3.0, 0.43 v3.2.0, 0.64 v2.7.0
% Syntax : Number of clauses : 11 ( 4 unt; 2 nHn; 9 RR)
% Number of literals : 23 ( 1 equ; 12 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Originally from Thierry Coquand
%--------------------------------------------------------------------------
cnf(f_is_associative,axiom,
f(X,f(Y,Z)) = f(f(X,Y),Z) ).
cnf(partitions_union,axiom,
( c(X)
| d1(X)
| d2(X) ) ).
cnf(partitions_exclusive_c_d1,hypothesis,
( ~ c(X)
| ~ d1(X) ) ).
cnf(partitions_exclusive_c_d2,hypothesis,
( ~ c(X)
| ~ d2(X) ) ).
cnf(partitions_exclusive_d1_d2,hypothesis,
( ~ d1(X)
| ~ d2(X) ) ).
cnf(partition_c_not_empty,hypothesis,
c(a1) ).
cnf(partition_d1_not_empty,hypothesis,
d1(a2) ).
cnf(partition_d2_not_empty,hypothesis,
d2(a3) ).
cnf(conjecture_1,negated_conjecture,
( d2(f(X,Y))
| d1(f(X,Y))
| ~ c(X)
| ~ c(Y) ) ).
cnf(conjecture_2,negated_conjecture,
( c(f(X,Y))
| ~ d1(X)
| ~ d1(Y) ) ).
cnf(conjecture_3,negated_conjecture,
( c(f(X,Y))
| ~ d2(X)
| ~ d2(Y) ) ).
%--------------------------------------------------------------------------