TPTP Problem File: ALG011-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG011-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : General Algebra
% Problem : Partition a monoid into 2 partitions
% Version : [Cla03] axioms.
% English : If C,D is a partition of a monoid M, we cannot have
% C * C subset D and D * D subset C.
% Refs : [Cla03] Claessen (2003), Email to G. Sutcliffe
% Source : [Cla03]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.09 v6.2.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.15 v5.4.0, 0.20 v5.3.0, 0.17 v5.2.0, 0.06 v5.0.0, 0.15 v4.0.1, 0.00 v3.4.0, 0.17 v3.3.0, 0.21 v3.2.0, 0.09 v2.7.0
% Syntax : Number of clauses : 7 ( 3 unt; 1 nHn; 5 RR)
% Number of literals : 13 ( 1 equ; 6 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Originally from Thierry Coquand
%--------------------------------------------------------------------------
cnf(f_is_associative,axiom,
f(X,f(Y,Z)) = f(f(X,Y),Z) ).
cnf(partitions_union,axiom,
( c(X)
| d(X) ) ).
cnf(partitions_exclusive,hypothesis,
( ~ c(X)
| ~ d(X) ) ).
cnf(partition_c_not_empty,hypothesis,
c(a1) ).
cnf(partition_d_not_empty,hypothesis,
d(a2) ).
cnf(conjecture_1,negated_conjecture,
( d(f(X,Y))
| ~ c(X)
| ~ c(Y) ) ).
cnf(conjecture_2,negated_conjecture,
( c(f(X,Y))
| ~ d(X)
| ~ d(Y) ) ).
%--------------------------------------------------------------------------