TPTP Problem File: ALG010-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG010-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : General Algebra (Quasivarieties)
% Problem : Prove J follows from HBCK
% Version : [EF+02] axioms.
% English : Axioms for the quasivariety HBCK are given below. Show that
% equation J follows.
% Refs : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Equ
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : hbck [EF+02]
% Status : Unsatisfiable
% Rating : 0.80 v9.0.0, 0.87 v8.2.0, 0.94 v8.1.0, 1.00 v7.5.0, 0.94 v7.4.0, 1.00 v7.3.0, 0.91 v7.0.0, 1.00 v6.3.0, 0.90 v6.2.0, 1.00 v2.5.0
% Syntax : Number of clauses : 8 ( 7 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 14 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : This result has been known for some time by a model-theoretic
% argument. The first 1st order proof was found by Veroff in 2002.
%--------------------------------------------------------------------------
%----M3
cnf(m3,axiom,
multiply(A,one) = one ).
%----M4
cnf(m4,axiom,
multiply(one,A) = A ).
%----M5
cnf(m5,axiom,
multiply(multiply(A,B),multiply(multiply(C,A),multiply(C,B))) = one ).
%----M7
cnf(m7,axiom,
( multiply(A,B) != one
| multiply(B,A) != one
| A = B ) ).
%----M8
cnf(m8,axiom,
multiply(A,A) = one ).
%----M9
cnf(m9,axiom,
multiply(A,multiply(B,C)) = multiply(B,multiply(A,C)) ).
%----H
cnf(h,axiom,
multiply(multiply(A,B),multiply(A,C)) = multiply(multiply(B,A),multiply(B,C)) ).
%----Denial of J
cnf(prove_j,negated_conjecture,
multiply(multiply(multiply(multiply(a,b),b),a),a) != multiply(multiply(multiply(multiply(b,a),a),b),b) ).
%--------------------------------------------------------------------------