TPTP Problem File: ALG008-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG008-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : TC + right identity does not give RC.
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.57 v9.0.0, 0.33 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v7.4.0, 0.25 v7.3.0
% Syntax : Number of clauses : 7 ( 7 unt; 0 nHn; 4 RR)
% Number of literals : 7 ( 7 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 8 con; 0-4 aty)
% Number of variables : 12 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from ALG008-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(thomsen_closure,axiom,
ifeq(multiply(V7,V),V6,ifeq(multiply(X,W),V6,ifeq(multiply(U,V),Z,ifeq(multiply(X,Y),Z,multiply(U,W),multiply(V7,Y)),multiply(V7,Y)),multiply(V7,Y)),multiply(V7,Y)) = multiply(V7,Y) ).
cnf(right_identity,axiom,
multiply(X,identity) = X ).
cnf(prove_reidimeister1,negated_conjecture,
multiply(c4,a) = multiply(c3,b) ).
cnf(prove_reidimeister2,negated_conjecture,
multiply(c2,a) = multiply(c1,b) ).
cnf(prove_reidimeister3,negated_conjecture,
multiply(c4,f) = multiply(c3,identity) ).
cnf(prove_reidimeister4,negated_conjecture,
multiply(c2,f) != multiply(c1,identity) ).
%------------------------------------------------------------------------------