TPTP Problem File: ALG008-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG008-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : General Algebra
% Problem : TC + right identity does not give RC.
% Version : [MP96] (equality) axioms : Especial.
% English : An algebra with a right identity satisfying the Thomsen
% Closure (RC) condition does not necessarily satisfy the
% Reidemeister Closure (RC) condition.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : TC-3 [MP96]
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.50 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.25 v6.2.0, 0.56 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.71 v4.0.1, 0.80 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.86 v2.5.0, 0.50 v2.4.0, 0.67 v2.3.0, 1.00 v2.2.1
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 5 RR)
% Number of literals : 10 ( 10 equ; 5 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 8 con; 0-2 aty)
% Number of variables : 9 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : The smallest model has 3 elements.
%--------------------------------------------------------------------------
%----Thomsen Closure (TC) condition:
cnf(thomsen_closure,axiom,
( multiply(X,Y) != Z
| multiply(U,V) != Z
| multiply(X,W) != V6
| multiply(V7,V) != V6
| multiply(U,W) = multiply(V7,Y) ) ).
%----Right identity:
cnf(right_identity,axiom,
multiply(X,identity) = X ).
%----Denial of Reidimeister Closure (RC) condidition.
cnf(prove_reidimeister1,negated_conjecture,
multiply(c4,a) = multiply(c3,b) ).
cnf(prove_reidimeister2,negated_conjecture,
multiply(c2,a) = multiply(c1,b) ).
cnf(prove_reidimeister3,negated_conjecture,
multiply(c4,f) = multiply(c3,identity) ).
cnf(prove_reidimeister4,negated_conjecture,
multiply(c2,f) != multiply(c1,identity) ).
%--------------------------------------------------------------------------