TPTP Problem File: ALG004-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG004-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Medial algebras
% Problem : Cancellative medial algebras satisfy the quotient condition.
% Version : [MP96] (equality) axioms.
% English :
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : MED-7 [MP96]
% Status : Unsatisfiable
% Rating : 0.47 v8.2.0, 0.44 v8.1.0, 0.53 v7.5.0, 0.59 v7.3.0, 0.62 v7.2.0, 0.45 v7.0.0, 0.46 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.55 v6.0.0, 0.43 v5.5.0, 0.62 v5.4.0, 0.67 v5.3.0, 0.60 v5.2.0, 0.44 v5.0.0, 0.67 v4.0.1, 0.62 v4.0.0, 0.57 v3.7.0, 0.29 v3.4.0, 0.17 v3.3.0, 0.33 v3.2.0, 0.40 v2.7.0, 0.50 v2.6.0, 0.17 v2.5.0, 0.50 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1
% Syntax : Number of clauses : 7 ( 5 unt; 0 nHn; 6 RR)
% Number of literals : 11 ( 11 equ; 5 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 8 con; 0-2 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Left and right cancellation:
cnf(left_cancellation,axiom,
( multiply(X,Y) != Z
| multiply(U,Y) != Z
| X = U ) ).
cnf(right_cancelaation,axiom,
( multiply(X,Y) != Z
| multiply(X,U) != Z
| Y = U ) ).
%----Medial law:
cnf(medial_law,axiom,
multiply(multiply(X,Y),multiply(Z,U)) = multiply(multiply(X,Z),multiply(Y,U)) ).
%----Denial of the quotient condition:
cnf(prove_quotient_condition1,negated_conjecture,
multiply(b,b0) = multiply(a,a0) ).
cnf(prove_quotient_condition2,negated_conjecture,
multiply(d,b0) = multiply(c,a0) ).
cnf(prove_quotient_condition3,negated_conjecture,
multiply(b,d0) = multiply(a,c0) ).
cnf(prove_quotient_condition4,negated_conjecture,
multiply(d,d0) != multiply(c,c0) ).
%--------------------------------------------------------------------------