TPTP Problem File: ALG003-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ALG003-1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Medial algebras
% Problem : Cancellative medial algebras
% Version : [MP96] (equality) axioms.
% English : We prove a property of cancellative medial algebras.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : MED-1 [MP96]
% Status : Unsatisfiable
% Rating : 0.47 v8.2.0, 0.44 v8.1.0, 0.58 v7.5.0, 0.59 v7.4.0, 0.65 v7.3.0, 0.62 v7.2.0, 0.45 v7.0.0, 0.46 v6.4.0, 0.57 v6.3.0, 0.50 v6.2.0, 0.64 v6.0.0, 0.43 v5.5.0, 0.88 v5.4.0, 0.89 v5.3.0, 0.90 v5.2.0, 0.89 v5.0.0, 0.78 v4.0.1, 0.88 v4.0.0, 0.71 v3.7.0, 0.57 v3.4.0, 0.50 v3.3.0, 0.44 v3.2.0, 0.40 v2.7.0, 0.50 v2.6.0, 0.40 v2.5.0
% Syntax : Number of clauses : 5 ( 3 unt; 0 nHn; 4 RR)
% Number of literals : 9 ( 9 equ; 5 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 7 con; 0-2 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
% Bugfixes : v2.5.0 - Fixed clause idempotent_element.
%--------------------------------------------------------------------------
%----Left and right cancellation:
cnf(left_cancellation,axiom,
( multiply(X,Y) != Z
| multiply(U,Y) != Z
| X = U ) ).
cnf(right_cancellation,axiom,
( multiply(X,Y) != Z
| multiply(X,U) != Z
| Y = U ) ).
%----Medial law:
cnf(medial_law,axiom,
multiply(multiply(X,Y),multiply(Z,U)) = multiply(multiply(X,Z),multiply(Y,U)) ).
%----There is an idempotent element:
cnf(idempotent_element,hypothesis,
multiply(an_element,an_element) = an_element ).
%----Denial of conclusion:
cnf(prove_this,negated_conjecture,
multiply(multiply(a,multiply(d,c)),multiply(multiply(b,e),f)) != multiply(multiply(a,multiply(b,c)),multiply(multiply(d,e),f)) ).
%--------------------------------------------------------------------------