TPTP Problem File: ALG001^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG001^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : General Algebra
% Problem : TPS problem THM133
% Version : Especial.
% English : The composition of homomorphisms of binary operators is a
% homomorphisms. Boyer et al JAR 2 page 284.
% Refs : [BL+86] Boyer et al. (1986), Set Theory in First-Order Logic:
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0365 [Bro09]
% : THM133 [TPS]
% : Problem 221-223 [BL+86]
% Status : Theorem
% Rating : 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 26 ( 0 ~; 0 |; 1 &; 24 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 3 ( 3 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 11 ( 0 ^; 11 !; 0 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(g_type,type,
g: $tType ).
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cTHM133_pme,conjecture,
! [Xh1: g > b,Xh2: b > a,Xf1: g > g > g,Xf2: b > b > b,Xf3: a > a > a] :
( ( ! [Xx: g,Xy: g] :
( ( Xh1 @ ( Xf1 @ Xx @ Xy ) )
= ( Xf2 @ ( Xh1 @ Xx ) @ ( Xh1 @ Xy ) ) )
& ! [Xx: b,Xy: b] :
( ( Xh2 @ ( Xf2 @ Xx @ Xy ) )
= ( Xf3 @ ( Xh2 @ Xx ) @ ( Xh2 @ Xy ) ) ) )
=> ! [Xx: g,Xy: g] :
( ( Xh2 @ ( Xh1 @ ( Xf1 @ Xx @ Xy ) ) )
= ( Xf3 @ ( Xh2 @ ( Xh1 @ Xx ) ) @ ( Xh2 @ ( Xh1 @ Xy ) ) ) ) ) ).
%------------------------------------------------------------------------------