ITP001 Axioms: ITP104+5.ax
%------------------------------------------------------------------------------
% File : ITP104+5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : ucord+2.ax [Gau20]
% : HL4104+5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 9 ( 1 unt; 0 def)
% Number of atoms : 19 ( 2 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 13 ( 3 ~; 0 |; 0 &)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 16 ( 16 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 11 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
fof(mem_c_2Eucord_2Eomega1,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2Eucord_2Eomega1(A_27a),ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))) ) ).
fof(conj_thm_2Eucord_2Eucinf__uncountable,axiom,
! [A_27a] :
( ne(A_27a)
=> ~ p(ap(c_2Epred__set_2Ecountable(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),c_2Epred__set_2EUNIV(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))))) ) ).
fof(conj_thm_2Eucord_2EUnum__cardlt__ucinf,axiom,
! [A_27a] :
( ne(A_27a)
=> ~ p(ap(ap(c_2Ecardinal_2Ecardleq(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),ty_2Enum_2Enum),c_2Epred__set_2EUNIV(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))))),c_2Epred__set_2EUNIV(ty_2Enum_2Enum))) ) ).
fof(conj_thm_2Eucord_2EUnum__cardle__ucinf,axiom,
! [A_27a] :
( ne(A_27a)
=> p(ap(ap(c_2Ecardinal_2Ecardleq(ty_2Enum_2Enum,ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),c_2Epred__set_2EUNIV(ty_2Enum_2Enum)),c_2Epred__set_2EUNIV(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))))) ) ).
fof(lameq_f2279,axiom,
! [A_27a,V0a] : ap(f2279(A_27a),V0a) = ap(ap(c_2Epair_2E_2C(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),bool),V0a),ap(c_2Epred__set_2Ecountable(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),ap(c_2Eordinal_2Epreds(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),V0a))) ).
fof(conj_thm_2Eucord_2Eucord__sup__exists__lemma,axiom,
! [A_27a] :
( ne(A_27a)
=> p(ap(ap(c_2Ecardinal_2Ecardleq(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),ap(c_2Epred__set_2EGSPEC(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),f2279(A_27a))),c_2Epred__set_2EUNIV(ty_2Esum_2Esum(ty_2Enum_2Enum,ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))))) ) ).
fof(ax_thm_2Eucord_2Eomega1__def,axiom,
! [A_27a] :
( ne(A_27a)
=> c_2Eucord_2Eomega1(A_27a) = ap(c_2Eordinal_2Esup(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),ap(c_2Epred__set_2EGSPEC(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),f2279(A_27a))) ) ).
fof(conj_thm_2Eucord_2Ex__lt__omega1__countable,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0x] :
( mem(V0x,ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))))
=> ( p(ap(ap(c_2Eordinal_2Eordlt(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),V0x),c_2Eucord_2Eomega1(A_27a)))
<=> p(ap(c_2Epred__set_2Ecountable(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),ap(c_2Eordinal_2Epreds(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),V0x))) ) ) ) ).
fof(conj_thm_2Eucord_2Eomega1__not__countable,axiom,
! [A_27a] :
( ne(A_27a)
=> ~ p(ap(c_2Epred__set_2Ecountable(ty_2Eordinal_2Eordinal(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool)))),ap(c_2Eordinal_2Epreds(ty_2Esum_2Esum(A_27a,arr(ty_2Enum_2Enum,bool))),c_2Eucord_2Eomega1(A_27a)))) ) ).
%------------------------------------------------------------------------------