ITP001 Axioms: ITP020+5.ax
%------------------------------------------------------------------------------
% File : ITP020+5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : basicSize+2.ax [Gau20]
% : HL4020+5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 12 ( 2 unt; 0 def)
% Number of atoms : 42 ( 9 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 28 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 23 ( 23 usr; 8 con; 0-5 aty)
% Number of variables : 34 ( 34 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
fof(mem_c_2EbasicSize_2Ebool__size,axiom,
mem(c_2EbasicSize_2Ebool__size,arr(bool,ty_2Enum_2Enum)) ).
fof(mem_c_2EbasicSize_2Eone__size,axiom,
mem(c_2EbasicSize_2Eone__size,arr(ty_2Eone_2Eone,ty_2Enum_2Enum)) ).
fof(mem_c_2EbasicSize_2Eoption__size,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2EbasicSize_2Eoption__size(A_27a),arr(arr(A_27a,ty_2Enum_2Enum),arr(ty_2Eoption_2Eoption(A_27a),ty_2Enum_2Enum))) ) ).
fof(mem_c_2EbasicSize_2Epair__size,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2EbasicSize_2Epair__size(A_27a,A_27b),arr(arr(A_27a,ty_2Enum_2Enum),arr(arr(A_27b,ty_2Enum_2Enum),arr(ty_2Epair_2Eprod(A_27a,A_27b),ty_2Enum_2Enum)))) ) ) ).
fof(mem_c_2EbasicSize_2Esum__size,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2EbasicSize_2Esum__size(A_27a,A_27b),arr(arr(A_27a,ty_2Enum_2Enum),arr(arr(A_27b,ty_2Enum_2Enum),arr(ty_2Esum_2Esum(A_27a,A_27b),ty_2Enum_2Enum)))) ) ) ).
fof(ax_thm_2EbasicSize_2Ebool__size__def,axiom,
! [V0b] :
( mem(V0b,bool)
=> ap(c_2EbasicSize_2Ebool__size,V0b) = c_2Enum_2E0 ) ).
fof(lameq_f226,axiom,
! [A_27a,A_27b,V0f] :
( mem(V0f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V2x] :
( mem(V2x,A_27a)
=> ! [V1g] :
( mem(V1g,arr(A_27b,ty_2Enum_2Enum))
=> ! [V3y] : ap(f226(A_27a,A_27b,V0f,V2x,V1g),V3y) = ap(ap(c_2Earithmetic_2E_2B,ap(V0f,V2x)),ap(V1g,V3y)) ) ) ) ).
fof(lameq_f227,axiom,
! [A_27b,A_27a,V0f] :
( mem(V0f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V1g] :
( mem(V1g,arr(A_27b,ty_2Enum_2Enum))
=> ! [V2x] : ap(f227(A_27b,A_27a,V0f,V1g),V2x) = f226(A_27a,A_27b,V0f,V2x,V1g) ) ) ).
fof(ax_thm_2EbasicSize_2Epair__size__def,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0f] :
( mem(V0f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V1g] :
( mem(V1g,arr(A_27b,ty_2Enum_2Enum))
=> ap(ap(c_2EbasicSize_2Epair__size(A_27a,A_27b),V0f),V1g) = ap(c_2Epair_2EUNCURRY(A_27a,A_27b,ty_2Enum_2Enum),f227(A_27b,A_27a,V0f,V1g)) ) ) ) ) ).
fof(ax_thm_2EbasicSize_2Eone__size__def,axiom,
! [V0x] :
( mem(V0x,ty_2Eone_2Eone)
=> ap(c_2EbasicSize_2Eone__size,V0x) = c_2Enum_2E0 ) ).
fof(ax_thm_2EbasicSize_2Esum__size__def,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ( ! [V0f] :
( mem(V0f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V1g] :
( mem(V1g,arr(A_27b,ty_2Enum_2Enum))
=> ! [V2x] :
( mem(V2x,A_27a)
=> ap(ap(ap(c_2EbasicSize_2Esum__size(A_27a,A_27b),V0f),V1g),ap(c_2Esum_2EINL(A_27a,A_27b),V2x)) = ap(V0f,V2x) ) ) )
& ! [V3f] :
( mem(V3f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V4g] :
( mem(V4g,arr(A_27b,ty_2Enum_2Enum))
=> ! [V5y] :
( mem(V5y,A_27b)
=> ap(ap(ap(c_2EbasicSize_2Esum__size(A_27a,A_27b),V3f),V4g),ap(c_2Esum_2EINR(A_27a,A_27b),V5y)) = ap(V4g,V5y) ) ) ) ) ) ) ).
fof(ax_thm_2EbasicSize_2Eoption__size__def,axiom,
! [A_27a] :
( ne(A_27a)
=> ( ! [V0f] :
( mem(V0f,arr(A_27a,ty_2Enum_2Enum))
=> ap(ap(c_2EbasicSize_2Eoption__size(A_27a),V0f),c_2Eoption_2ENONE(A_27a)) = c_2Enum_2E0 )
& ! [V1f] :
( mem(V1f,arr(A_27a,ty_2Enum_2Enum))
=> ! [V2x] :
( mem(V2x,A_27a)
=> ap(ap(c_2EbasicSize_2Eoption__size(A_27a),V1f),ap(c_2Eoption_2ESOME(A_27a),V2x)) = ap(c_2Enum_2ESUC,ap(V1f,V2x)) ) ) ) ) ).
%------------------------------------------------------------------------------