ITP001 Axioms: ITP010^7.ax
%------------------------------------------------------------------------------
% File : ITP010^7 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 syntactic export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : one.ax [Gau19]
% : HL4010^7.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 33 ( 12 unt; 16 typ; 0 def)
% Number of atoms : 19 ( 7 equ; 1 cnn)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 53 ( 1 ~; 1 |; 1 &; 40 @)
% ( 8 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg; 40 nst)
% Number of types : 3 ( 2 usr)
% Number of type conns : 35 ( 35 >; 0 *; 0 +; 0 <<)
% Number of symbols : 16 ( 14 usr; 3 con; 0-4 aty)
% Number of variables : 46 ( 3 ^ 32 !; 3 ?; 46 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: $tType > $tType > $tType ).
thf(tyop_2Eone_2Eone,type,
tyop_2Eone_2Eone: $tType ).
thf(c_2Ebool_2E_21,type,
c_2Ebool_2E_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $o > $o > $o ).
thf(c_2Emin_2E_3D,type,
c_2Emin_2E_3D:
!>[A_27a: $tType] : ( A_27a > A_27a > $o ) ).
thf(c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $o > $o > $o ).
thf(c_2Ebool_2E_3F,type,
c_2Ebool_2E_3F:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2E_3F_21,type,
c_2Ebool_2E_3F_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Emin_2E_40,type,
c_2Emin_2E_40:
!>[A_27a: $tType] : ( ( A_27a > $o ) > A_27a ) ).
thf(c_2Ebool_2ET,type,
c_2Ebool_2ET: $o ).
thf(c_2Ebool_2ETYPE__DEFINITION,type,
c_2Ebool_2ETYPE__DEFINITION:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > $o ) > ( A_27b > A_27a ) > $o ) ).
thf(c_2Ebool_2E_5C_2F,type,
c_2Ebool_2E_5C_2F: $o > $o > $o ).
thf(c_2Eone_2Eone,type,
c_2Eone_2Eone: tyop_2Eone_2Eone ).
thf(c_2Eone_2Eone__CASE,type,
c_2Eone_2Eone__CASE:
!>[A_27a: $tType] : ( tyop_2Eone_2Eone > A_27a > A_27a ) ).
thf(c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $o > $o ).
thf(logicdef_2E_2F_5C,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).
thf(logicdef_2E_5C_2F,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).
thf(logicdef_2E_7E,axiom,
! [V0: $o] :
( ( c_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).
thf(logicdef_2E_3D_3D_3E,axiom,
! [V0: $o,V1: $o] :
( ( c_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).
thf(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0: A_27a,V1: A_27a] :
( ( c_2Emin_2E_3D @ A_27a @ V0 @ V1 )
<=> ( V0 = V1 ) ) ).
thf(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_21 @ A_27a @ V0f )
<=> ! [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_3F @ A_27a @ V0f )
<=> ? [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(thm_2Eone_2Eone__TY__DEF,axiom,
? [V0rep: tyop_2Eone_2Eone > $o] :
( c_2Ebool_2ETYPE__DEFINITION @ $o @ tyop_2Eone_2Eone
@ ^ [V1b: $o] : V1b
@ V0rep ) ).
thf(thm_2Eone_2Eone__DEF,axiom,
( c_2Eone_2Eone
= ( c_2Emin_2E_40 @ tyop_2Eone_2Eone
@ ^ [V0x: tyop_2Eone_2Eone] : c_2Ebool_2ET ) ) ).
thf(thm_2Eone_2Eone__case__def,axiom,
! [A_27a: $tType,V0u: tyop_2Eone_2Eone,V1x: A_27a] :
( ( c_2Eone_2Eone__CASE @ A_27a @ V0u @ V1x )
= V1x ) ).
thf(thm_2Eone_2Eone__axiom,axiom,
! [A_27a: $tType,V0f: A_27a > tyop_2Eone_2Eone,V1g: A_27a > tyop_2Eone_2Eone] : ( V0f = V1g ) ).
thf(thm_2Eone_2Eone,axiom,
! [V0v: tyop_2Eone_2Eone] : ( V0v = c_2Eone_2Eone ) ).
thf(thm_2Eone_2Eone__Axiom,axiom,
! [A_27a: $tType,V0e: A_27a] :
( c_2Ebool_2E_3F_21 @ ( tyop_2Eone_2Eone > A_27a )
@ ^ [V1fn: tyop_2Eone_2Eone > A_27a] : ( c_2Emin_2E_3D @ A_27a @ ( V1fn @ c_2Eone_2Eone ) @ V0e ) ) ).
thf(thm_2Eone_2Eone__prim__rec,axiom,
! [A_27a: $tType,V0e: A_27a] :
? [V1fn: tyop_2Eone_2Eone > A_27a] :
( ( V1fn @ c_2Eone_2Eone )
= V0e ) ).
thf(thm_2Eone_2Eone__induction,axiom,
! [V0P: tyop_2Eone_2Eone > $o] :
( ( V0P @ c_2Eone_2Eone )
=> ! [V1x: tyop_2Eone_2Eone] : ( V0P @ V1x ) ) ).
thf(thm_2Eone_2EFORALL__ONE,axiom,
! [V0P: tyop_2Eone_2Eone > $o] :
( ! [V1x: tyop_2Eone_2Eone] : ( V0P @ V1x )
<=> ( V0P @ c_2Eone_2Eone ) ) ).
thf(thm_2Eone_2Eone__case__thm,axiom,
! [A_27a: $tType,V0x: A_27a] :
( ( c_2Eone_2Eone__CASE @ A_27a @ c_2Eone_2Eone @ V0x )
= V0x ) ).
%------------------------------------------------------------------------------