ITP001 Axioms: ITP010^5.ax
%------------------------------------------------------------------------------
% File : ITP010^5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : one^2.ax [Gau20]
% : HL4010^5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 23 ( 6 unt; 7 typ; 0 def)
% Number of atoms : 68 ( 9 equ; 0 cnn)
% Maximal formula atoms : 11 ( 2 avg)
% Number of connectives : 128 ( 0 ~; 0 |; 2 &; 115 @)
% ( 1 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 6 avg; 115 nst)
% Number of types : 2 ( 1 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 19 ( 18 usr; 15 con; 0-2 aty)
% Number of variables : 26 ( 3 ^ 21 !; 2 ?; 26 :)
% SPC : TH0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(tp_ty_2Eone_2Eone,type,
ty_2Eone_2Eone: del ).
thf(stp_ty_2Eone_2Eone,type,
tp__ty_2Eone_2Eone: $tType ).
thf(stp_inj_ty_2Eone_2Eone,type,
inj__ty_2Eone_2Eone: tp__ty_2Eone_2Eone > $i ).
thf(stp_surj_ty_2Eone_2Eone,type,
surj__ty_2Eone_2Eone: $i > tp__ty_2Eone_2Eone ).
thf(stp_inj_surj_ty_2Eone_2Eone,axiom,
! [X: tp__ty_2Eone_2Eone] :
( ( surj__ty_2Eone_2Eone @ ( inj__ty_2Eone_2Eone @ X ) )
= X ) ).
thf(stp_inj_mem_ty_2Eone_2Eone,axiom,
! [X: tp__ty_2Eone_2Eone] : ( mem @ ( inj__ty_2Eone_2Eone @ X ) @ ty_2Eone_2Eone ) ).
thf(stp_iso_mem_ty_2Eone_2Eone,axiom,
! [X: $i] :
( ( mem @ X @ ty_2Eone_2Eone )
=> ( X
= ( inj__ty_2Eone_2Eone @ ( surj__ty_2Eone_2Eone @ X ) ) ) ) ).
thf(tp_c_2Eone_2Eone,type,
c_2Eone_2Eone: $i ).
thf(mem_c_2Eone_2Eone,axiom,
mem @ c_2Eone_2Eone @ ty_2Eone_2Eone ).
thf(stp_fo_c_2Eone_2Eone,type,
fo__c_2Eone_2Eone: tp__ty_2Eone_2Eone ).
thf(stp_eq_fo_c_2Eone_2Eone,axiom,
( ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone )
= c_2Eone_2Eone ) ).
thf(tp_c_2Eone_2Eone__CASE,type,
c_2Eone_2Eone__CASE: del > $i ).
thf(mem_c_2Eone_2Eone__CASE,axiom,
! [A_27a: del] : ( mem @ ( c_2Eone_2Eone__CASE @ A_27a ) @ ( arr @ ty_2Eone_2Eone @ ( arr @ A_27a @ A_27a ) ) ) ).
thf(ax_thm_2Eone_2Eone__TY__DEF,axiom,
? [V0rep: $i] :
( ( mem @ V0rep @ ( arr @ ty_2Eone_2Eone @ bool ) )
& ( p
@ ( ap
@ ( ap @ ( c_2Ebool_2ETYPE__DEFINITION @ bool @ ty_2Eone_2Eone )
@ ( lam @ bool
@ ^ [V1b: $i] : V1b ) )
@ V0rep ) ) ) ).
thf(conj_thm_2Eone_2Eone__axiom,axiom,
! [A_27a: del,V0f: $i] :
( ( mem @ V0f @ ( arr @ A_27a @ ty_2Eone_2Eone ) )
=> ! [V1g: $i] :
( ( mem @ V1g @ ( arr @ A_27a @ ty_2Eone_2Eone ) )
=> ( V0f = V1g ) ) ) ).
thf(ax_thm_2Eone_2Eone__DEF,axiom,
( fo__c_2Eone_2Eone
= ( surj__ty_2Eone_2Eone
@ ( ap @ ( c_2Emin_2E_40 @ ty_2Eone_2Eone )
@ ( lam @ ty_2Eone_2Eone
@ ^ [V0x: $i] : c_2Ebool_2ET ) ) ) ) ).
thf(conj_thm_2Eone_2Eone,axiom,
! [V0v: tp__ty_2Eone_2Eone] : ( V0v = fo__c_2Eone_2Eone ) ).
thf(conj_thm_2Eone_2Eone__Axiom,axiom,
! [A_27a: del,V0e: $i] :
( ( mem @ V0e @ A_27a )
=> ( p
@ ( ap @ ( c_2Ebool_2E_3F_21 @ ( arr @ ty_2Eone_2Eone @ A_27a ) )
@ ( lam @ ( arr @ ty_2Eone_2Eone @ A_27a )
@ ^ [V1fn: $i] : ( ap @ ( ap @ ( c_2Emin_2E_3D @ A_27a ) @ ( ap @ V1fn @ ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone ) ) ) @ V0e ) ) ) ) ) ).
thf(conj_thm_2Eone_2Eone__prim__rec,axiom,
! [A_27a: del,V0e: $i] :
( ( mem @ V0e @ A_27a )
=> ? [V1fn: $i] :
( ( mem @ V1fn @ ( arr @ ty_2Eone_2Eone @ A_27a ) )
& ( ( ap @ V1fn @ ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone ) )
= V0e ) ) ) ).
thf(conj_thm_2Eone_2Eone__induction,axiom,
! [V0P: $i] :
( ( mem @ V0P @ ( arr @ ty_2Eone_2Eone @ bool ) )
=> ( ( p @ ( ap @ V0P @ ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone ) ) )
=> ! [V1x: tp__ty_2Eone_2Eone] : ( p @ ( ap @ V0P @ ( inj__ty_2Eone_2Eone @ V1x ) ) ) ) ) ).
thf(conj_thm_2Eone_2EFORALL__ONE,axiom,
! [V0P: $i] :
( ( mem @ V0P @ ( arr @ ty_2Eone_2Eone @ bool ) )
=> ( ! [V1x: tp__ty_2Eone_2Eone] : ( p @ ( ap @ V0P @ ( inj__ty_2Eone_2Eone @ V1x ) ) )
<=> ( p @ ( ap @ V0P @ ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone ) ) ) ) ) ).
thf(ax_thm_2Eone_2Eone__case__def,axiom,
! [A_27a: del,V0u: tp__ty_2Eone_2Eone,V1x: $i] :
( ( mem @ V1x @ A_27a )
=> ( ( ap @ ( ap @ ( c_2Eone_2Eone__CASE @ A_27a ) @ ( inj__ty_2Eone_2Eone @ V0u ) ) @ V1x )
= V1x ) ) ).
thf(conj_thm_2Eone_2Eone__case__thm,axiom,
! [A_27a: del,V0x: $i] :
( ( mem @ V0x @ A_27a )
=> ( ( ap @ ( ap @ ( c_2Eone_2Eone__CASE @ A_27a ) @ ( inj__ty_2Eone_2Eone @ fo__c_2Eone_2Eone ) ) @ V0x )
= V0x ) ) ).
%------------------------------------------------------------------------------