ITP001 Axioms: ITP007_7.ax
%------------------------------------------------------------------------------
% File : ITP007_7 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 syntactic export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : sat.ax [Gau19]
% : HL4007_7.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 72 ( 8 unt; 25 typ; 0 def)
% Number of atoms : 176 ( 17 equ)
% Maximal formula atoms : 16 ( 2 avg)
% Number of connectives : 183 ( 54 ~; 41 |; 21 &)
% ( 31 <=>; 36 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 6 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 19 ( 11 >; 8 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 23 ( 23 usr; 6 con; 0-4 aty)
% Number of variables : 116 ( 99 !; 1 ?; 116 :)
% ( 16 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TF1_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
tff(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
tff(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: ( $tType * $tType ) > $tType ).
tff(app_2E2,type,
app_2E2:
!>[A_27a: $tType,A_27b: $tType] : ( ( tyop_2Emin_2Efun(A_27a,A_27b) * A_27a ) > A_27b ) ).
tff(p,type,
p: tyop_2Emin_2Ebool > $o ).
tff(combin_i_2E0,type,
combin_i_2E0:
!>[A_27a: $tType] : tyop_2Emin_2Efun(A_27a,A_27a) ).
tff(combin_k_2E0,type,
combin_k_2E0:
!>[A_27a: $tType,A_27b: $tType] : tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27b,A_27a)) ).
tff(combin_s_2E0,type,
combin_s_2E0:
!>[A_27a: $tType,A_27b: $tType,A_27c: $tType] : tyop_2Emin_2Efun(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27b,A_27c)),tyop_2Emin_2Efun(tyop_2Emin_2Efun(A_27a,A_27b),tyop_2Emin_2Efun(A_27a,A_27c))) ).
tff(c_2Ebool_2E_21_2E0,type,
c_2Ebool_2E_21_2E0:
!>[A_27a: $tType] : tyop_2Emin_2Efun(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool),tyop_2Emin_2Ebool) ).
tff(c_2Ebool_2E_21_2E1,type,
c_2Ebool_2E_21_2E1:
!>[A_27a: $tType] : ( tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool) > tyop_2Emin_2Ebool ) ).
tff(c_2Ebool_2E_2F_5C_2E0,type,
c_2Ebool_2E_2F_5C_2E0: tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool)) ).
tff(c_2Ebool_2E_2F_5C_2E2,type,
c_2Ebool_2E_2F_5C_2E2: ( tyop_2Emin_2Ebool * tyop_2Emin_2Ebool ) > tyop_2Emin_2Ebool ).
tff(c_2Emin_2E_3D_2E0,type,
c_2Emin_2E_3D_2E0:
!>[A_27a: $tType] : tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool)) ).
tff(c_2Emin_2E_3D_2E2,type,
c_2Emin_2E_3D_2E2:
!>[A_27a: $tType] : ( ( A_27a * A_27a ) > tyop_2Emin_2Ebool ) ).
tff(c_2Emin_2E_3D_3D_3E_2E0,type,
c_2Emin_2E_3D_3D_3E_2E0: tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool)) ).
tff(c_2Emin_2E_3D_3D_3E_2E2,type,
c_2Emin_2E_3D_3D_3E_2E2: ( tyop_2Emin_2Ebool * tyop_2Emin_2Ebool ) > tyop_2Emin_2Ebool ).
tff(c_2Ebool_2E_3F_2E0,type,
c_2Ebool_2E_3F_2E0:
!>[A_27a: $tType] : tyop_2Emin_2Efun(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool),tyop_2Emin_2Ebool) ).
tff(c_2Ebool_2E_3F_2E1,type,
c_2Ebool_2E_3F_2E1:
!>[A_27a: $tType] : ( tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool) > tyop_2Emin_2Ebool ) ).
tff(c_2Ebool_2ECOND_2E0,type,
c_2Ebool_2ECOND_2E0:
!>[A_27a: $tType] : tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27a,A_27a))) ).
tff(c_2Ebool_2ECOND_2E3,type,
c_2Ebool_2ECOND_2E3:
!>[A_27a: $tType] : ( ( tyop_2Emin_2Ebool * A_27a * A_27a ) > A_27a ) ).
tff(c_2Ebool_2EF_2E0,type,
c_2Ebool_2EF_2E0: tyop_2Emin_2Ebool ).
tff(c_2Ebool_2ET_2E0,type,
c_2Ebool_2ET_2E0: tyop_2Emin_2Ebool ).
tff(c_2Ebool_2E_5C_2F_2E0,type,
c_2Ebool_2E_5C_2F_2E0: tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool)) ).
tff(c_2Ebool_2E_5C_2F_2E2,type,
c_2Ebool_2E_5C_2F_2E2: ( tyop_2Emin_2Ebool * tyop_2Emin_2Ebool ) > tyop_2Emin_2Ebool ).
tff(c_2Ebool_2E_7E_2E0,type,
c_2Ebool_2E_7E_2E0: tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool) ).
tff(c_2Ebool_2E_7E_2E1,type,
c_2Ebool_2E_7E_2E1: tyop_2Emin_2Ebool > tyop_2Emin_2Ebool ).
tff(thm_2Eextra_2Dho_2Eeq__ext,axiom,
! [A_27a: $tType,A_27b: $tType,V0f_2E0: tyop_2Emin_2Efun(A_27a,A_27b),V1g_2E0: tyop_2Emin_2Efun(A_27a,A_27b)] :
( ! [V2x_2E0: A_27a] : ( app_2E2(A_27a,A_27b,V0f_2E0,V2x_2E0) = app_2E2(A_27a,A_27b,V1g_2E0,V2x_2E0) )
=> ( V0f_2E0 = V1g_2E0 ) ) ).
tff(thm_2Eextra_2Dho_2Eboolext,axiom,
! [V0_2E0: tyop_2Emin_2Ebool,V1_2E0: tyop_2Emin_2Ebool] :
( ( p(V0_2E0)
<=> p(V1_2E0) )
=> ( V0_2E0 = V1_2E0 ) ) ).
tff(thm_2Eextra_2Dho_2Etruth,axiom,
p(c_2Ebool_2ET_2E0) ).
tff(thm_2Eextra_2Dho_2Enotfalse,axiom,
~ p(c_2Ebool_2EF_2E0) ).
tff(thm_2Eextra_2Dho_2Ebool__cases__ax,axiom,
! [V0t_2E0: tyop_2Emin_2Ebool] :
( ( V0t_2E0 = c_2Ebool_2ET_2E0 )
| ( V0t_2E0 = c_2Ebool_2EF_2E0 ) ) ).
tff(thm_2Eextra_2Dho_2Ei__thm,axiom,
! [A_27a: $tType,V0x_2E0: A_27a] : ( app_2E2(A_27a,A_27a,combin_i_2E0(A_27a),V0x_2E0) = V0x_2E0 ) ).
tff(thm_2Eextra_2Dho_2Ek__thm,axiom,
! [A_27a: $tType,A_27b: $tType,V0x_2E0: A_27a,V1y_2E0: A_27b] : ( app_2E2(A_27b,A_27a,app_2E2(A_27a,tyop_2Emin_2Efun(A_27b,A_27a),combin_k_2E0(A_27a,A_27b),V0x_2E0),V1y_2E0) = V0x_2E0 ) ).
tff(thm_2Eextra_2Dho_2Es__thm,axiom,
! [A_27a: $tType,A_27b: $tType,A_27c: $tType,V0f_2E0: tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27b,A_27c)),V1g_2E0: tyop_2Emin_2Efun(A_27a,A_27b),V2x_2E0: A_27a] : ( app_2E2(A_27a,A_27c,app_2E2(tyop_2Emin_2Efun(A_27a,A_27b),tyop_2Emin_2Efun(A_27a,A_27c),app_2E2(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Efun(A_27b,A_27c)),tyop_2Emin_2Efun(tyop_2Emin_2Efun(A_27a,A_27b),tyop_2Emin_2Efun(A_27a,A_27c)),combin_s_2E0(A_27a,A_27b,A_27c),V0f_2E0),V1g_2E0),V2x_2E0) = app_2E2(A_27b,A_27c,app_2E2(A_27a,tyop_2Emin_2Efun(A_27b,A_27c),V0f_2E0,V2x_2E0),app_2E2(A_27a,A_27b,V1g_2E0,V2x_2E0)) ) ).
tff(logicdef_2E_2F_5C,axiom,
! [V0_2E0: tyop_2Emin_2Ebool,V1_2E0: tyop_2Emin_2Ebool] :
( p(c_2Ebool_2E_2F_5C_2E2(V0_2E0,V1_2E0))
<=> ( p(V0_2E0)
& p(V1_2E0) ) ) ).
tff(logicdef_2E_5C_2F,axiom,
! [V0_2E0: tyop_2Emin_2Ebool,V1_2E0: tyop_2Emin_2Ebool] :
( p(c_2Ebool_2E_5C_2F_2E2(V0_2E0,V1_2E0))
<=> ( p(V0_2E0)
| p(V1_2E0) ) ) ).
tff(logicdef_2E_7E,axiom,
! [V0_2E0: tyop_2Emin_2Ebool] :
( p(c_2Ebool_2E_7E_2E1(V0_2E0))
<=> ~ p(V0_2E0) ) ).
tff(logicdef_2E_3D_3D_3E,axiom,
! [V0_2E0: tyop_2Emin_2Ebool,V1_2E0: tyop_2Emin_2Ebool] :
( p(c_2Emin_2E_3D_3D_3E_2E2(V0_2E0,V1_2E0))
<=> ( p(V0_2E0)
=> p(V1_2E0) ) ) ).
tff(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0_2E0: A_27a,V1_2E0: A_27a] :
( p(c_2Emin_2E_3D_2E2(A_27a,V0_2E0,V1_2E0))
<=> ( V0_2E0 = V1_2E0 ) ) ).
tff(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f_2E0: tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool)] :
( p(c_2Ebool_2E_21_2E1(A_27a,V0f_2E0))
<=> ! [V1x_2E0: A_27a] : p(app_2E2(A_27a,tyop_2Emin_2Ebool,V0f_2E0,V1x_2E0)) ) ).
tff(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f_2E0: tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool)] :
( p(c_2Ebool_2E_3F_2E1(A_27a,V0f_2E0))
<=> ? [V1x_2E0: A_27a] : p(app_2E2(A_27a,tyop_2Emin_2Ebool,V0f_2E0,V1x_2E0)) ) ).
tff(arityeq1_2Ec_2Ebool_2E_21_2E1_2Emono_2EA_27a,axiom,
! [A_27a: $tType,X0_2E0: tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool)] : ( c_2Ebool_2E_21_2E1(A_27a,X0_2E0) = app_2E2(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool),tyop_2Emin_2Ebool,c_2Ebool_2E_21_2E0(A_27a),X0_2E0) ) ).
tff(arityeq2_2Ec_2Ebool_2E_2F_5C_2E2,axiom,
! [X0_2E0: tyop_2Emin_2Ebool,X1_2E0: tyop_2Emin_2Ebool] :
( ( p(X0_2E0)
& p(X1_2E0) )
<=> p(app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool,app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool),c_2Ebool_2E_2F_5C_2E0,X0_2E0),X1_2E0)) ) ).
tff(arityeq2_2Ec_2Emin_2E_3D_2E2_2Emono_2EA_27a,axiom,
! [A_27a: $tType,X0_2E0: A_27a,X1_2E0: A_27a] :
( ( X0_2E0 = X1_2E0 )
<=> p(app_2E2(A_27a,tyop_2Emin_2Ebool,app_2E2(A_27a,tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool),c_2Emin_2E_3D_2E0(A_27a),X0_2E0),X1_2E0)) ) ).
tff(arityeq2_2Ec_2Emin_2E_3D_3D_3E_2E2,axiom,
! [X0_2E0: tyop_2Emin_2Ebool,X1_2E0: tyop_2Emin_2Ebool] :
( ( p(X0_2E0)
=> p(X1_2E0) )
<=> p(app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool,app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool),c_2Emin_2E_3D_3D_3E_2E0,X0_2E0),X1_2E0)) ) ).
tff(arityeq1_2Ec_2Ebool_2E_3F_2E1_2Emono_2EA_27a,axiom,
! [A_27a: $tType,X0_2E0: tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool)] : ( c_2Ebool_2E_3F_2E1(A_27a,X0_2E0) = app_2E2(tyop_2Emin_2Efun(A_27a,tyop_2Emin_2Ebool),tyop_2Emin_2Ebool,c_2Ebool_2E_3F_2E0(A_27a),X0_2E0) ) ).
tff(arityeq3_2Ec_2Ebool_2ECOND_2E3_2Emono_2Etyop_2Emin_2Ebool,axiom,
! [X0_2E0: tyop_2Emin_2Ebool,X1_2E0: tyop_2Emin_2Ebool,X2_2E0: tyop_2Emin_2Ebool] : ( c_2Ebool_2ECOND_2E3(tyop_2Emin_2Ebool,X0_2E0,X1_2E0,X2_2E0) = app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool,app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool),app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool)),c_2Ebool_2ECOND_2E0(tyop_2Emin_2Ebool),X0_2E0),X1_2E0),X2_2E0) ) ).
tff(arityeq2_2Ec_2Ebool_2E_5C_2F_2E2,axiom,
! [X0_2E0: tyop_2Emin_2Ebool,X1_2E0: tyop_2Emin_2Ebool] :
( ( p(X0_2E0)
| p(X1_2E0) )
<=> p(app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool,app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Efun(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool),c_2Ebool_2E_5C_2F_2E0,X0_2E0),X1_2E0)) ) ).
tff(arityeq1_2Ec_2Ebool_2E_7E_2E1,axiom,
! [X0_2E0: tyop_2Emin_2Ebool] :
( ~ p(X0_2E0)
<=> p(app_2E2(tyop_2Emin_2Ebool,tyop_2Emin_2Ebool,c_2Ebool_2E_7E_2E0,X0_2E0)) ) ).
tff(thm_2Esat_2EAND__IMP,axiom,
! [V0A_2E0: tyop_2Emin_2Ebool,V1B_2E0: tyop_2Emin_2Ebool,V2C_2E0: tyop_2Emin_2Ebool] :
( ( ( p(V0A_2E0)
& p(V1B_2E0) )
=> p(V2C_2E0) )
<=> ( p(V0A_2E0)
=> ( p(V1B_2E0)
=> p(V2C_2E0) ) ) ) ).
tff(thm_2Esat_2ENOT__NOT,axiom,
! [V0t_2E0: tyop_2Emin_2Ebool] :
( ~ ~ p(V0t_2E0)
<=> p(V0t_2E0) ) ).
tff(thm_2Esat_2EAND__INV,axiom,
! [V0A_2E0: tyop_2Emin_2Ebool] :
( ( ~ p(V0A_2E0)
& p(V0A_2E0) )
<=> p(c_2Ebool_2EF_2E0) ) ).
tff(thm_2Esat_2EAND__INV__IMP,axiom,
! [V0A_2E0: tyop_2Emin_2Ebool] :
( p(V0A_2E0)
=> ( ~ p(V0A_2E0)
=> p(c_2Ebool_2EF_2E0) ) ) ).
tff(thm_2Esat_2EOR__DUAL,axiom,
! [V0B_2E0: tyop_2Emin_2Ebool,V1A_2E0: tyop_2Emin_2Ebool] :
( ( ~ ( p(V1A_2E0)
| p(V0B_2E0) )
=> p(c_2Ebool_2EF_2E0) )
<=> ( ~ p(V1A_2E0)
=> ( ~ p(V0B_2E0)
=> p(c_2Ebool_2EF_2E0) ) ) ) ).
tff(thm_2Esat_2EOR__DUAL2,axiom,
! [V0B_2E0: tyop_2Emin_2Ebool,V1A_2E0: tyop_2Emin_2Ebool] :
( ( ~ ( p(V1A_2E0)
| p(V0B_2E0) )
=> p(c_2Ebool_2EF_2E0) )
<=> ( ( p(V1A_2E0)
=> p(c_2Ebool_2EF_2E0) )
=> ( ~ p(V0B_2E0)
=> p(c_2Ebool_2EF_2E0) ) ) ) ).
tff(thm_2Esat_2EOR__DUAL3,axiom,
! [V0B_2E0: tyop_2Emin_2Ebool,V1A_2E0: tyop_2Emin_2Ebool] :
( ( ~ ( ~ p(V1A_2E0)
| p(V0B_2E0) )
=> p(c_2Ebool_2EF_2E0) )
<=> ( p(V1A_2E0)
=> ( ~ p(V0B_2E0)
=> p(c_2Ebool_2EF_2E0) ) ) ) ).
tff(thm_2Esat_2EAND__INV2,axiom,
! [V0A_2E0: tyop_2Emin_2Ebool] :
( ( ~ p(V0A_2E0)
=> p(c_2Ebool_2EF_2E0) )
=> ( ( p(V0A_2E0)
=> p(c_2Ebool_2EF_2E0) )
=> p(c_2Ebool_2EF_2E0) ) ) ).
tff(thm_2Esat_2ENOT__ELIM2,axiom,
! [V0A_2E0: tyop_2Emin_2Ebool] :
( ( ~ p(V0A_2E0)
=> p(c_2Ebool_2EF_2E0) )
<=> p(V0A_2E0) ) ).
tff(thm_2Esat_2EEQT__Imp1,axiom,
! [V0b_2E0: tyop_2Emin_2Ebool] :
( p(V0b_2E0)
=> ( V0b_2E0 = c_2Ebool_2ET_2E0 ) ) ).
tff(thm_2Esat_2EEQF__Imp1,axiom,
! [V0t_2E0: tyop_2Emin_2Ebool] :
( ~ p(V0t_2E0)
=> ( V0t_2E0 = c_2Ebool_2EF_2E0 ) ) ).
tff(thm_2Esat_2Edc__eq,axiom,
! [V0r_2E0: tyop_2Emin_2Ebool,V1q_2E0: tyop_2Emin_2Ebool,V2p_2E0: tyop_2Emin_2Ebool] :
( ( p(V2p_2E0)
<=> ( V1q_2E0 = V0r_2E0 ) )
<=> ( ( p(V2p_2E0)
| p(V1q_2E0)
| p(V0r_2E0) )
& ( p(V2p_2E0)
| ~ p(V0r_2E0)
| ~ p(V1q_2E0) )
& ( p(V1q_2E0)
| ~ p(V0r_2E0)
| ~ p(V2p_2E0) )
& ( p(V0r_2E0)
| ~ p(V1q_2E0)
| ~ p(V2p_2E0) ) ) ) ).
tff(thm_2Esat_2Edc__conj,axiom,
! [V0r_2E0: tyop_2Emin_2Ebool,V1q_2E0: tyop_2Emin_2Ebool,V2p_2E0: tyop_2Emin_2Ebool] :
( ( p(V2p_2E0)
<=> ( p(V1q_2E0)
& p(V0r_2E0) ) )
<=> ( ( p(V2p_2E0)
| ~ p(V1q_2E0)
| ~ p(V0r_2E0) )
& ( p(V1q_2E0)
| ~ p(V2p_2E0) )
& ( p(V0r_2E0)
| ~ p(V2p_2E0) ) ) ) ).
tff(thm_2Esat_2Edc__disj,axiom,
! [V0r_2E0: tyop_2Emin_2Ebool,V1q_2E0: tyop_2Emin_2Ebool,V2p_2E0: tyop_2Emin_2Ebool] :
( ( p(V2p_2E0)
<=> ( p(V1q_2E0)
| p(V0r_2E0) ) )
<=> ( ( p(V2p_2E0)
| ~ p(V1q_2E0) )
& ( p(V2p_2E0)
| ~ p(V0r_2E0) )
& ( p(V1q_2E0)
| p(V0r_2E0)
| ~ p(V2p_2E0) ) ) ) ).
tff(thm_2Esat_2Edc__imp,axiom,
! [V0r_2E0: tyop_2Emin_2Ebool,V1q_2E0: tyop_2Emin_2Ebool,V2p_2E0: tyop_2Emin_2Ebool] :
( ( p(V2p_2E0)
<=> ( p(V1q_2E0)
=> p(V0r_2E0) ) )
<=> ( ( p(V2p_2E0)
| p(V1q_2E0) )
& ( p(V2p_2E0)
| ~ p(V0r_2E0) )
& ( ~ p(V1q_2E0)
| p(V0r_2E0)
| ~ p(V2p_2E0) ) ) ) ).
tff(thm_2Esat_2Edc__neg,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ( p(V1p_2E0)
<=> ~ p(V0q_2E0) )
<=> ( ( p(V1p_2E0)
| p(V0q_2E0) )
& ( ~ p(V0q_2E0)
| ~ p(V1p_2E0) ) ) ) ).
tff(thm_2Esat_2Edc__cond,axiom,
! [V0s_2E0: tyop_2Emin_2Ebool,V1r_2E0: tyop_2Emin_2Ebool,V2q_2E0: tyop_2Emin_2Ebool,V3p_2E0: tyop_2Emin_2Ebool] :
( ( V3p_2E0 = c_2Ebool_2ECOND_2E3(tyop_2Emin_2Ebool,V2q_2E0,V1r_2E0,V0s_2E0) )
<=> ( ( p(V3p_2E0)
| p(V2q_2E0)
| ~ p(V0s_2E0) )
& ( p(V3p_2E0)
| ~ p(V1r_2E0)
| ~ p(V2q_2E0) )
& ( p(V3p_2E0)
| ~ p(V1r_2E0)
| ~ p(V0s_2E0) )
& ( ~ p(V2q_2E0)
| p(V1r_2E0)
| ~ p(V3p_2E0) )
& ( p(V2q_2E0)
| p(V0s_2E0)
| ~ p(V3p_2E0) ) ) ) ).
tff(thm_2Esat_2Epth__ni1,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ~ ( p(V1p_2E0)
=> p(V0q_2E0) )
=> p(V1p_2E0) ) ).
tff(thm_2Esat_2Epth__ni2,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ~ ( p(V1p_2E0)
=> p(V0q_2E0) )
=> ~ p(V0q_2E0) ) ).
tff(thm_2Esat_2Epth__no1,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ~ ( p(V1p_2E0)
| p(V0q_2E0) )
=> ~ p(V1p_2E0) ) ).
tff(thm_2Esat_2Epth__no2,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ~ ( p(V1p_2E0)
| p(V0q_2E0) )
=> ~ p(V0q_2E0) ) ).
tff(thm_2Esat_2Epth__an1,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ( p(V1p_2E0)
& p(V0q_2E0) )
=> p(V1p_2E0) ) ).
tff(thm_2Esat_2Epth__an2,axiom,
! [V0q_2E0: tyop_2Emin_2Ebool,V1p_2E0: tyop_2Emin_2Ebool] :
( ( p(V1p_2E0)
& p(V0q_2E0) )
=> p(V0q_2E0) ) ).
tff(thm_2Esat_2Epth__nn,axiom,
! [V0p_2E0: tyop_2Emin_2Ebool] :
( ~ ~ p(V0p_2E0)
=> p(V0p_2E0) ) ).
%------------------------------------------------------------------------------