ITP001 Axioms: ITP006_5.ax
%------------------------------------------------------------------------------
% File : ITP006_5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : normalForms_2.ax [Gau20]
% : HL4006_5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 51 ( 4 equ)
% Maximal formula atoms : 4 ( 6 avg)
% Number of connectives : 12 ( 0 ~; 0 |; 0 &)
% ( 2 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 33 ( 33 fml; 0 var)
% Number of types : 1 ( 0 usr)
% Number of type conns : 3 ( 2 >; 1 *; 0 +; 0 <<)
% Number of predicates : 7 ( 6 usr; 2 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 17 ( 17 !; 0 ?; 17 :)
% SPC : TF0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
tff(tp_c_2EnormalForms_2EEXT__POINT,type,
c_2EnormalForms_2EEXT__POINT: ( del * del ) > $i ).
tff(mem_c_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a: del,A_27b: del] : mem(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),arr(arr(A_27a,A_27b),arr(arr(A_27a,A_27b),A_27a))) ).
tff(tp_c_2EnormalForms_2EUNIV__POINT,type,
c_2EnormalForms_2EUNIV__POINT: del > $i ).
tff(mem_c_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a: del] : mem(c_2EnormalForms_2EUNIV__POINT(A_27a),arr(arr(A_27a,bool),A_27a)) ).
tff(ax_thm_2EnormalForms_2EEXT__POINT__DEF,axiom,
! [A_27a: del,A_27b: del,V0f: $i] :
( mem(V0f,arr(A_27a,A_27b))
=> ! [V1g: $i] :
( mem(V1g,arr(A_27a,A_27b))
=> ( ( ap(V0f,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) = ap(V1g,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) )
=> ( V0f = V1g ) ) ) ) ).
tff(conj_thm_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a: del,A_27b: del,V0f: $i] :
( mem(V0f,arr(A_27a,A_27b))
=> ! [V1g: $i] :
( mem(V1g,arr(A_27a,A_27b))
=> ( ( ap(V0f,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) = ap(V1g,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) )
<=> ( V0f = V1g ) ) ) ) ).
tff(ax_thm_2EnormalForms_2EUNIV__POINT__DEF,axiom,
! [A_27a: del,V0p: $i] :
( mem(V0p,arr(A_27a,bool))
=> ( p(ap(V0p,ap(c_2EnormalForms_2EUNIV__POINT(A_27a),V0p)))
=> ! [V1x: $i] :
( mem(V1x,A_27a)
=> p(ap(V0p,V1x)) ) ) ) ).
tff(conj_thm_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a: del,V0p: $i] :
( mem(V0p,arr(A_27a,bool))
=> ( p(ap(V0p,ap(c_2EnormalForms_2EUNIV__POINT(A_27a),V0p)))
<=> ! [V1x: $i] :
( mem(V1x,A_27a)
=> p(ap(V0p,V1x)) ) ) ) ).
%------------------------------------------------------------------------------