ITP001 Axioms: ITP006+5.ax
%------------------------------------------------------------------------------
% File : ITP006+5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : normalForms+2.ax [Gau20]
% : HL4006+5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 0 unt; 0 def)
% Number of atoms : 27 ( 4 equ)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 21 ( 0 ~; 0 |; 0 &)
% ( 2 <=>; 19 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 17 ( 17 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
fof(mem_c_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> mem(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),arr(arr(A_27a,A_27b),arr(arr(A_27a,A_27b),A_27a))) ) ) ).
fof(mem_c_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a] :
( ne(A_27a)
=> mem(c_2EnormalForms_2EUNIV__POINT(A_27a),arr(arr(A_27a,bool),A_27a)) ) ).
fof(ax_thm_2EnormalForms_2EEXT__POINT__DEF,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0f] :
( mem(V0f,arr(A_27a,A_27b))
=> ! [V1g] :
( mem(V1g,arr(A_27a,A_27b))
=> ( ap(V0f,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) = ap(V1g,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g))
=> V0f = V1g ) ) ) ) ) ).
fof(conj_thm_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [A_27b] :
( ne(A_27b)
=> ! [V0f] :
( mem(V0f,arr(A_27a,A_27b))
=> ! [V1g] :
( mem(V1g,arr(A_27a,A_27b))
=> ( ap(V0f,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g)) = ap(V1g,ap(ap(c_2EnormalForms_2EEXT__POINT(A_27a,A_27b),V0f),V1g))
<=> V0f = V1g ) ) ) ) ) ).
fof(ax_thm_2EnormalForms_2EUNIV__POINT__DEF,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0p] :
( mem(V0p,arr(A_27a,bool))
=> ( p(ap(V0p,ap(c_2EnormalForms_2EUNIV__POINT(A_27a),V0p)))
=> ! [V1x] :
( mem(V1x,A_27a)
=> p(ap(V0p,V1x)) ) ) ) ) ).
fof(conj_thm_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a] :
( ne(A_27a)
=> ! [V0p] :
( mem(V0p,arr(A_27a,bool))
=> ( p(ap(V0p,ap(c_2EnormalForms_2EUNIV__POINT(A_27a),V0p)))
<=> ! [V1x] :
( mem(V1x,A_27a)
=> p(ap(V0p,V1x)) ) ) ) ) ).
%------------------------------------------------------------------------------