ITP001 Axioms: ITP006^7.ax
%------------------------------------------------------------------------------
% File : ITP006^7 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 syntactic export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : normalForms.ax [Gau19]
% : HL4006^7.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 22 ( 5 unt; 11 typ; 0 def)
% Number of atoms : 13 ( 5 equ; 1 cnn)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 60 ( 1 ~; 1 |; 1 &; 45 @)
% ( 9 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg; 45 nst)
% Number of types : 2 ( 1 usr)
% Number of type conns : 29 ( 29 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 10 usr; 1 con; 0-4 aty)
% Number of variables : 36 ( 0 ^ 29 !; 1 ?; 36 :)
% ( 6 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(tyop_2Emin_2Ebool,type,
tyop_2Emin_2Ebool: $tType ).
thf(tyop_2Emin_2Efun,type,
tyop_2Emin_2Efun: $tType > $tType > $tType ).
thf(c_2Ebool_2E_21,type,
c_2Ebool_2E_21:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2Ebool_2E_2F_5C,type,
c_2Ebool_2E_2F_5C: $o > $o > $o ).
thf(c_2Emin_2E_3D,type,
c_2Emin_2E_3D:
!>[A_27a: $tType] : ( A_27a > A_27a > $o ) ).
thf(c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $o > $o > $o ).
thf(c_2Ebool_2E_3F,type,
c_2Ebool_2E_3F:
!>[A_27a: $tType] : ( ( A_27a > $o ) > $o ) ).
thf(c_2EnormalForms_2EEXT__POINT,type,
c_2EnormalForms_2EEXT__POINT:
!>[A_27a: $tType,A_27b: $tType] : ( ( A_27a > A_27b ) > ( A_27a > A_27b ) > A_27a ) ).
thf(c_2EnormalForms_2EUNIV__POINT,type,
c_2EnormalForms_2EUNIV__POINT:
!>[A_27a: $tType] : ( ( A_27a > $o ) > A_27a ) ).
thf(c_2Ebool_2E_5C_2F,type,
c_2Ebool_2E_5C_2F: $o > $o > $o ).
thf(c_2Ebool_2E_7E,type,
c_2Ebool_2E_7E: $o > $o ).
thf(logicdef_2E_2F_5C,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_2F_5C @ V0 @ V1 )
<=> ( V0
& V1 ) ) ).
thf(logicdef_2E_5C_2F,axiom,
! [V0: $o,V1: $o] :
( ( c_2Ebool_2E_5C_2F @ V0 @ V1 )
<=> ( V0
| V1 ) ) ).
thf(logicdef_2E_7E,axiom,
! [V0: $o] :
( ( c_2Ebool_2E_7E @ V0 )
<=> ( (~) @ V0 ) ) ).
thf(logicdef_2E_3D_3D_3E,axiom,
! [V0: $o,V1: $o] :
( ( c_2Emin_2E_3D_3D_3E @ V0 @ V1 )
<=> ( V0
=> V1 ) ) ).
thf(logicdef_2E_3D,axiom,
! [A_27a: $tType,V0: A_27a,V1: A_27a] :
( ( c_2Emin_2E_3D @ A_27a @ V0 @ V1 )
<=> ( V0 = V1 ) ) ).
thf(quantdef_2E_21,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_21 @ A_27a @ V0f )
<=> ! [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(quantdef_2E_3F,axiom,
! [A_27a: $tType,V0f: A_27a > $o] :
( ( c_2Ebool_2E_3F @ A_27a @ V0f )
<=> ? [V1x: A_27a] : ( V0f @ V1x ) ) ).
thf(thm_2EnormalForms_2EEXT__POINT__DEF,axiom,
! [A_27a: $tType,A_27b: $tType,V0f: A_27a > A_27b,V1g: A_27a > A_27b] :
( ( ( V0f @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b @ V0f @ V1g ) )
= ( V1g @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b @ V0f @ V1g ) ) )
=> ( V0f = V1g ) ) ).
thf(thm_2EnormalForms_2EUNIV__POINT__DEF,axiom,
! [A_27a: $tType,V0p: A_27a > $o] :
( ( V0p @ ( c_2EnormalForms_2EUNIV__POINT @ A_27a @ V0p ) )
=> ! [V1x: A_27a] : ( V0p @ V1x ) ) ).
thf(thm_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a: $tType,A_27b: $tType,V0f: A_27a > A_27b,V1g: A_27a > A_27b] :
( ( ( V0f @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b @ V0f @ V1g ) )
= ( V1g @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b @ V0f @ V1g ) ) )
<=> ( V0f = V1g ) ) ).
thf(thm_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a: $tType,V0p: A_27a > $o] :
( ( V0p @ ( c_2EnormalForms_2EUNIV__POINT @ A_27a @ V0p ) )
<=> ! [V1x: A_27a] : ( V0p @ V1x ) ) ).
%------------------------------------------------------------------------------