ITP001 Axioms: ITP006^5.ax
%------------------------------------------------------------------------------
% File : ITP006^5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : normalForms^2.ax [Gau20]
% : HL4006^5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 51 ( 4 equ; 0 cnn)
% Maximal formula atoms : 9 ( 6 avg)
% Number of connectives : 109 ( 0 ~; 0 |; 0 &; 97 @)
% ( 2 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 9 avg; 97 nst)
% Number of types : 1 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 6 con; 0-2 aty)
% Number of variables : 17 ( 0 ^ 17 !; 0 ?; 17 :)
% SPC : TH0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(tp_c_2EnormalForms_2EEXT__POINT,type,
c_2EnormalForms_2EEXT__POINT: del > del > $i ).
thf(mem_c_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a: del,A_27b: del] : ( mem @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b ) @ ( arr @ ( arr @ A_27a @ A_27b ) @ ( arr @ ( arr @ A_27a @ A_27b ) @ A_27a ) ) ) ).
thf(tp_c_2EnormalForms_2EUNIV__POINT,type,
c_2EnormalForms_2EUNIV__POINT: del > $i ).
thf(mem_c_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a: del] : ( mem @ ( c_2EnormalForms_2EUNIV__POINT @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ A_27a ) ) ).
thf(ax_thm_2EnormalForms_2EEXT__POINT__DEF,axiom,
! [A_27a: del,A_27b: del,V0f: $i] :
( ( mem @ V0f @ ( arr @ A_27a @ A_27b ) )
=> ! [V1g: $i] :
( ( mem @ V1g @ ( arr @ A_27a @ A_27b ) )
=> ( ( ( ap @ V0f @ ( ap @ ( ap @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b ) @ V0f ) @ V1g ) )
= ( ap @ V1g @ ( ap @ ( ap @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b ) @ V0f ) @ V1g ) ) )
=> ( V0f = V1g ) ) ) ) ).
thf(conj_thm_2EnormalForms_2EEXT__POINT,axiom,
! [A_27a: del,A_27b: del,V0f: $i] :
( ( mem @ V0f @ ( arr @ A_27a @ A_27b ) )
=> ! [V1g: $i] :
( ( mem @ V1g @ ( arr @ A_27a @ A_27b ) )
=> ( ( ( ap @ V0f @ ( ap @ ( ap @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b ) @ V0f ) @ V1g ) )
= ( ap @ V1g @ ( ap @ ( ap @ ( c_2EnormalForms_2EEXT__POINT @ A_27a @ A_27b ) @ V0f ) @ V1g ) ) )
<=> ( V0f = V1g ) ) ) ) ).
thf(ax_thm_2EnormalForms_2EUNIV__POINT__DEF,axiom,
! [A_27a: del,V0p: $i] :
( ( mem @ V0p @ ( arr @ A_27a @ bool ) )
=> ( ( p @ ( ap @ V0p @ ( ap @ ( c_2EnormalForms_2EUNIV__POINT @ A_27a ) @ V0p ) ) )
=> ! [V1x: $i] :
( ( mem @ V1x @ A_27a )
=> ( p @ ( ap @ V0p @ V1x ) ) ) ) ) ).
thf(conj_thm_2EnormalForms_2EUNIV__POINT,axiom,
! [A_27a: del,V0p: $i] :
( ( mem @ V0p @ ( arr @ A_27a @ bool ) )
=> ( ( p @ ( ap @ V0p @ ( ap @ ( c_2EnormalForms_2EUNIV__POINT @ A_27a ) @ V0p ) ) )
<=> ! [V1x: $i] :
( ( mem @ V1x @ A_27a )
=> ( p @ ( ap @ V0p @ V1x ) ) ) ) ) ).
%------------------------------------------------------------------------------