ITP001 Axioms: ITP006^4.ax


%------------------------------------------------------------------------------
% File     : ITP006^4 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain   : Interactive Theorem Proving
% Axioms   : HOL4 syntactic export, chainy mode
% Version  : [BG+19] axioms.
% English  :

% Refs     : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
%          : [Gau19] Gauthier (2019), Email to Geoff Sutcliffe
% Source   : [BG+19]
% Names    : normalForms.ax [Gau19]
%          : HL4006^4.ax [TPAP]

% Status   : Satisfiable
% Syntax   : Number of formulae    :   74 (  20 unt;  44 typ;   0 def)
%            Number of atoms       :   50 (  25 equ;   1 cnn)
%            Maximal formula atoms :    2 (   0 avg)
%            Number of connectives :  598 (   1   ~;   1   |;   1   &; 581   @)
%                                         (  10 <=>;   4  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   17 (   6 avg; 581 nst)
%            Number of types       :    4 (   3 usr)
%            Number of type conns  :   56 (  56   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   43 (  41 usr;  18 con; 0-3 aty)
%            Number of variables   :   74 (   0   ^  73   !;   1   ?;  74   :)
% SPC      : TH0_SAT_EQU_NAR

% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(u,type,
    u: $tType ).

thf(d,type,
    d: $tType ).

thf(du,type,
    du: $tType ).

thf(tyop_2Emin_2Ebool,type,
    tyop_2Emin_2Ebool: d ).

thf(tyop_2Emin_2Efun,type,
    tyop_2Emin_2Efun: d > d > d ).

thf(s,type,
    s: d > u > du ).

thf(app_2E2,type,
    app_2E2: du > du > u ).

thf(combin_i_2E0,type,
    combin_i_2E0: u ).

thf(combin_k_2E0,type,
    combin_k_2E0: u ).

thf(combin_s_2E0,type,
    combin_s_2E0: u ).

thf(c_2Ebool_2E_21_2E0,type,
    c_2Ebool_2E_21_2E0: u ).

thf(c_2Ebool_2E_21_2E1,type,
    c_2Ebool_2E_21_2E1: du > u ).

thf(c_2Ebool_2E_2F_5C_2E0,type,
    c_2Ebool_2E_2F_5C_2E0: u ).

thf(c_2Ebool_2E_2F_5C_2E2,type,
    c_2Ebool_2E_2F_5C_2E2: du > du > u ).

thf(c_2Emin_2E_3D_2E0,type,
    c_2Emin_2E_3D_2E0: u ).

thf(c_2Emin_2E_3D_2E2,type,
    c_2Emin_2E_3D_2E2: du > du > u ).

thf(c_2Emin_2E_3D_3D_3E_2E0,type,
    c_2Emin_2E_3D_3D_3E_2E0: u ).

thf(c_2Emin_2E_3D_3D_3E_2E2,type,
    c_2Emin_2E_3D_3D_3E_2E2: du > du > u ).

thf(c_2Ebool_2E_3F_2E0,type,
    c_2Ebool_2E_3F_2E0: u ).

thf(c_2Ebool_2E_3F_2E1,type,
    c_2Ebool_2E_3F_2E1: du > u ).

thf(c_2EnormalForms_2EEXT__POINT_2E0,type,
    c_2EnormalForms_2EEXT__POINT_2E0: u ).

thf(c_2EnormalForms_2EEXT__POINT_2E2,type,
    c_2EnormalForms_2EEXT__POINT_2E2: du > du > u ).

thf(c_2Ebool_2EF_2E0,type,
    c_2Ebool_2EF_2E0: u ).

thf(c_2Ebool_2ET_2E0,type,
    c_2Ebool_2ET_2E0: u ).

thf(c_2EnormalForms_2EUNIV__POINT_2E0,type,
    c_2EnormalForms_2EUNIV__POINT_2E0: u ).

thf(c_2EnormalForms_2EUNIV__POINT_2E1,type,
    c_2EnormalForms_2EUNIV__POINT_2E1: du > u ).

thf(c_2Ebool_2E_5C_2F_2E0,type,
    c_2Ebool_2E_5C_2F_2E0: u ).

thf(c_2Ebool_2E_5C_2F_2E2,type,
    c_2Ebool_2E_5C_2F_2E2: du > du > u ).

thf(c_2Ebool_2E_7E_2E0,type,
    c_2Ebool_2E_7E_2E0: u ).

thf(c_2Ebool_2E_7E_2E1,type,
    c_2Ebool_2E_7E_2E1: du > u ).

thf(mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,type,
    mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool: ( $o > $o ) > $o > $o ).

thf(mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
    mono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: ( $o > $o > $o ) > $o > $o > $o ).

thf(mono_2Ec_2Ebool_2E_2F_5C,type,
    mono_2Ec_2Ebool_2E_2F_5C: $o > $o > $o ).

thf(mono_2Ec_2Emin_2E_3D_3D_3E,type,
    mono_2Ec_2Emin_2E_3D_3D_3E: $o > $o > $o ).

thf(mono_2Ec_2Ebool_2EF,type,
    mono_2Ec_2Ebool_2EF: $o ).

thf(mono_2Ec_2Ebool_2ET,type,
    mono_2Ec_2Ebool_2ET: $o ).

thf(mono_2Ec_2Ebool_2E_5C_2F,type,
    mono_2Ec_2Ebool_2E_5C_2F: $o > $o > $o ).

thf(mono_2Ec_2Ebool_2E_7E,type,
    mono_2Ec_2Ebool_2E_7E: $o > $o ).

thf(i_mono_2Etyop_2Emin_2Ebool,type,
    i_mono_2Etyop_2Emin_2Ebool: $o > u ).

thf(i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
    i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: ( $o > $o ) > u ).

thf(i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,type,
    i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29: ( $o > $o > $o ) > u ).

thf(j_mono_2Etyop_2Emin_2Ebool,type,
    j_mono_2Etyop_2Emin_2Ebool: du > $o ).

thf(j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,type,
    j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29: du > $o > $o ).

thf(j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,type,
    j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29: du > $o > $o > $o ).

thf(reserved_2Eho_2Eeq__ext,axiom,
    ! [A_27a: d,A_27b: d,V0f_2E0: u,V1g_2E0: u] :
      ( ! [V2x_2E0: u] :
          ( ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) )
          = ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) )
     => ( ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 )
        = ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ).

thf(reserved_2Eho_2Ei__thm,axiom,
    ! [A_27a: d,V0x_2E0: u] :
      ( ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27a ) @ combin_i_2E0 ) @ ( s @ A_27a @ V0x_2E0 ) ) )
      = ( s @ A_27a @ V0x_2E0 ) ) ).

thf(reserved_2Eho_2Ek__thm,axiom,
    ! [A_27a: d,A_27b: d,V0x_2E0: u,V1y_2E0: u] :
      ( ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27b @ A_27a ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27a ) ) @ combin_k_2E0 ) @ ( s @ A_27a @ V0x_2E0 ) ) ) @ ( s @ A_27b @ V1y_2E0 ) ) )
      = ( s @ A_27a @ V0x_2E0 ) ) ).

thf(reserved_2Eho_2Es__thm,axiom,
    ! [A_27a: d,A_27b: d,A_27c: d,V0f_2E0: u,V1g_2E0: u,V2x_2E0: u] :
      ( ( s @ A_27c @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ ( tyop_2Emin_2Efun @ A_27a @ A_27c ) ) ) @ combin_s_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ V0f_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) @ ( s @ A_27a @ V2x_2E0 ) ) )
      = ( s @ A_27c @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27b @ A_27c ) ) @ V0f_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) @ ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ V2x_2E0 ) ) ) ) ) ) ).

thf(reserved_2Elogic_2E_2F_5C,axiom,
    ! [V0: $o,V1: $o] :
      ( ( mono_2Ec_2Ebool_2E_2F_5C @ V0 @ V1 )
    <=> ( V0
        & V1 ) ) ).

thf(reserved_2Elogic_2E_5C_2F,axiom,
    ! [V0: $o,V1: $o] :
      ( ( mono_2Ec_2Ebool_2E_5C_2F @ V0 @ V1 )
    <=> ( V0
        | V1 ) ) ).

thf(reserved_2Elogic_2E_7E,axiom,
    ! [V0: $o] :
      ( ( mono_2Ec_2Ebool_2E_7E @ V0 )
    <=> ( (~) @ V0 ) ) ).

thf(reserved_2Elogic_2E_3D_3D_3E,axiom,
    ! [V0: $o,V1: $o] :
      ( ( mono_2Ec_2Emin_2E_3D_3D_3E @ V0 @ V1 )
    <=> ( V0
       => V1 ) ) ).

thf(reserved_2Elogic_2E_3D,axiom,
    ! [A_27a: d,V0_2E0: u,V1_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Emin_2E_3D_2E2 @ ( s @ A_27a @ V0_2E0 ) @ ( s @ A_27a @ V1_2E0 ) ) ) )
    <=> ( ( s @ A_27a @ V0_2E0 )
        = ( s @ A_27a @ V1_2E0 ) ) ) ).

thf(reserved_2Equant_2E_21,axiom,
    ! [A_27a: d,V0f_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_21_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) ) ) )
    <=> ! [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

thf(reserved_2Equant_2E_3F,axiom,
    ! [A_27a: d,V0f_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_3F_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) ) ) )
    <=> ? [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0f_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Ebool,axiom,
    ! [V0_2E0: u] :
      ( ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ V0_2E0 ) ) ) )
      = ( s @ tyop_2Emin_2Ebool @ V0_2E0 ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
    ! [V0_2E0: u] :
      ( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ V0_2E0 ) ) ) )
      = ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ V0_2E0 ) ) ).

thf(ij_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,axiom,
    ! [V0_2E0: u] :
      ( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ V0_2E0 ) ) ) )
      = ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ V0_2E0 ) ) ).

thf(ji_2Emono_2Etyop_2Emin_2Ebool,axiom,
    ! [V0: $o] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V0 ) ) )
      = V0 ) ).

thf(ji_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
    ! [V0: $o > $o] :
      ( ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ V0 ) ) )
      = V0 ) ).

thf(ji_2Emono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29,axiom,
    ! [V0: $o > $o > $o] :
      ( ( j_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ V0 ) ) )
      = V0 ) ).

thf(arityeq1_2Ec_2Ebool_2E_21_2E1_2Emono_2EA_27a,axiom,
    ! [A_27a: d,X0_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_21_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) )
      = ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ c_2Ebool_2E_21_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ) ).

thf(arityeq2_2Ec_2Emin_2E_3D_2E2_2Emono_2EA_27a,axiom,
    ! [A_27a: d,X0_2E0: u,X1_2E0: u] :
      ( ( ( s @ A_27a @ X0_2E0 )
        = ( s @ A_27a @ X1_2E0 ) )
    <=> ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) ) @ c_2Emin_2E_3D_2E0 ) @ ( s @ A_27a @ X0_2E0 ) ) ) @ ( s @ A_27a @ X1_2E0 ) ) ) ) ) ).

thf(arityeq1_2Ec_2Ebool_2E_3F_2E1_2Emono_2EA_27a,axiom,
    ! [A_27a: d,X0_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( c_2Ebool_2E_3F_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) )
      = ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ tyop_2Emin_2Ebool ) @ c_2Ebool_2E_3F_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ) ).

thf(arityeq2_2Ec_2EnormalForms_2EEXT__POINT_2E2_2Emono_2EA_27a_20mono_2EA_27b,axiom,
    ! [A_27a: d,A_27b: d,X0_2E0: u,X1_2E0: u] :
      ( ( s @ A_27a @ ( c_2EnormalForms_2EEXT__POINT_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ X0_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ X1_2E0 ) ) )
      = ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ A_27a ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ A_27a ) ) @ c_2EnormalForms_2EEXT__POINT_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ X0_2E0 ) ) ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ X1_2E0 ) ) ) ) ).

thf(arityeq1_2Ec_2EnormalForms_2EUNIV__POINT_2E1_2Emono_2EA_27a,axiom,
    ! [A_27a: d,X0_2E0: u] :
      ( ( s @ A_27a @ ( c_2EnormalForms_2EUNIV__POINT_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) )
      = ( s @ A_27a @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ A_27a ) @ c_2EnormalForms_2EUNIV__POINT_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ X0_2E0 ) ) ) ) ).

thf(monoeq_2Emono_2Eapp_2E2_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,axiom,
    ! [V0: $o > $o,V1: $o] :
      ( ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ ( V0 @ V1 ) ) )
      = ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ V0 ) ) @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V1 ) ) ) ) ) ).

thf(monoeq_2Emono_2Eapp_2E2_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
    ! [V0: $o > $o > $o,V1: $o] :
      ( ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29 @ ( V0 @ V1 ) ) )
      = ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ ( tyop_2Emin_2Efun @ tyop_2Emin_2Ebool @ tyop_2Emin_2Ebool ) ) @ ( i_mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29_29 @ V0 ) ) @ ( s @ tyop_2Emin_2Ebool @ ( i_mono_2Etyop_2Emin_2Ebool @ V1 ) ) ) ) ) ).

thf(monoapp_2Emono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Ebool,axiom,
    ! [V0: $o > $o,V1: $o] :
      ( ( V0 @ V1 )
      = ( V0 @ V1 ) ) ).

thf(monoapp_2Emono_2Eapp_2Emono_2Etyop_2Emin_2Ebool_20mono_2Etyop_2Emin_2Efun_28tyop_2Emin_2Ebool_2Ctyop_2Emin_2Ebool_29,axiom,
    ! [V0: $o > $o > $o,V1: $o] :
      ( ( V0 @ V1 )
      = ( V0 @ V1 ) ) ).

thf(thm_2EnormalForms_2EEXT__POINT__DEF,axiom,
    ! [A_27a: d,A_27b: d,V0f_2E0: u,V1g_2E0: u] :
      ( ( ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EEXT__POINT_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ) )
        = ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EEXT__POINT_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ) ) )
     => ( ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 )
        = ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ).

thf(thm_2EnormalForms_2EUNIV__POINT__DEF,axiom,
    ! [A_27a: d,V0p_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EUNIV__POINT_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) ) ) ) ) )
     => ! [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

thf(thm_2EnormalForms_2EEXT__POINT,axiom,
    ! [A_27a: d,A_27b: d,V0f_2E0: u,V1g_2E0: u] :
      ( ( ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EEXT__POINT_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ) )
        = ( s @ A_27b @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EEXT__POINT_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 ) @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ) ) )
    <=> ( ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V0f_2E0 )
        = ( s @ ( tyop_2Emin_2Efun @ A_27a @ A_27b ) @ V1g_2E0 ) ) ) ).

thf(thm_2EnormalForms_2EUNIV__POINT,axiom,
    ! [A_27a: d,V0p_2E0: u] :
      ( ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) @ ( s @ A_27a @ ( c_2EnormalForms_2EUNIV__POINT_2E1 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) ) ) ) ) )
    <=> ! [V1x_2E0: u] : ( j_mono_2Etyop_2Emin_2Ebool @ ( s @ tyop_2Emin_2Ebool @ ( app_2E2 @ ( s @ ( tyop_2Emin_2Efun @ A_27a @ tyop_2Emin_2Ebool ) @ V0p_2E0 ) @ ( s @ A_27a @ V1x_2E0 ) ) ) ) ) ).

%------------------------------------------------------------------------------