ITP001 Axioms: ITP002_5.ax
%------------------------------------------------------------------------------
% File : ITP002_5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : min_2.ax [Gau20]
% : HL4002_5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 16 ( 6 unt; 7 typ; 0 def)
% Number of atoms : 38 ( 4 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 8 ( 0 ~; 0 |; 0 &)
% ( 2 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of FOOLs : 21 ( 21 fml; 0 var)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 5 >; 1 *; 0 +; 0 <<)
% Number of predicates : 7 ( 6 usr; 2 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 12 ( 12 !; 0 ?; 12 :)
% SPC : TF0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
tff(stp_o,type,
tp__o: $tType ).
tff(stp_inj_o,type,
inj__o: tp__o > $i ).
tff(stp_surj_o,type,
surj__o: $i > tp__o ).
tff(stp_inj_surj_o,axiom,
! [X: tp__o] : ( surj__o(inj__o(X)) = X ) ).
tff(stp_inj_mem_o,axiom,
! [X: tp__o] : mem(inj__o(X),bool) ).
tff(stp_iso_mem_o,axiom,
! [X: $i] :
( mem(X,bool)
=> ( X = inj__o(surj__o(X)) ) ) ).
tff(tp_c_2Emin_2E_3D,type,
c_2Emin_2E_3D: del > $i ).
tff(mem_c_2Emin_2E_3D,axiom,
! [A_27a: del] : mem(c_2Emin_2E_3D(A_27a),arr(A_27a,arr(A_27a,bool))) ).
tff(ax_eq_p,axiom,
! [A: del,X: $i] :
( mem(X,A)
=> ! [Y: $i] :
( mem(Y,A)
=> ( p(ap(ap(c_2Emin_2E_3D(A),X),Y))
<=> ( X = Y ) ) ) ) ).
tff(tp_c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $i ).
tff(mem_c_2Emin_2E_3D_3D_3E,axiom,
mem(c_2Emin_2E_3D_3D_3E,arr(bool,arr(bool,bool))) ).
tff(stp_fo_c_2Emin_2E_3D_3D_3E,type,
fo__c_2Emin_2E_3D_3D_3E: ( tp__o * tp__o ) > tp__o ).
tff(stp_eq_fo_c_2Emin_2E_3D_3D_3E,axiom,
! [X0: tp__o,X1: tp__o] : ( inj__o(fo__c_2Emin_2E_3D_3D_3E(X0,X1)) = ap(ap(c_2Emin_2E_3D_3D_3E,inj__o(X0)),inj__o(X1)) ) ).
tff(ax_imp_p,axiom,
! [Q: $i] :
( mem(Q,bool)
=> ! [R: $i] :
( mem(R,bool)
=> ( p(ap(ap(c_2Emin_2E_3D_3D_3E,Q),R))
<=> ( p(Q)
=> p(R) ) ) ) ) ).
tff(tp_c_2Emin_2E_40,type,
c_2Emin_2E_40: del > $i ).
tff(mem_c_2Emin_2E_40,axiom,
! [A_27a: del] : mem(c_2Emin_2E_40(A_27a),arr(arr(A_27a,bool),A_27a)) ).
%------------------------------------------------------------------------------