ITP001 Axioms: ITP002^5.ax
%------------------------------------------------------------------------------
% File : ITP002^5 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% : [Gau20] Gauthier (2020), Email to Geoff Sutcliffe
% Source : [BG+19]
% Names : min^2.ax [Gau20]
% : HL4002^5.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 29 ( 1 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 48 ( 0 ~; 0 |; 0 &; 41 @)
% ( 2 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg; 41 nst)
% Number of types : 1 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 7 con; 0-2 aty)
% Number of variables : 7 ( 0 ^ 7 !; 0 ?; 7 :)
% SPC : TH0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
thf(tp_c_2Emin_2E_3D,type,
c_2Emin_2E_3D: del > $i ).
thf(mem_c_2Emin_2E_3D,axiom,
! [A_27a: del] : ( mem @ ( c_2Emin_2E_3D @ A_27a ) @ ( arr @ A_27a @ ( arr @ A_27a @ bool ) ) ) ).
thf(ax_eq_p,axiom,
! [A: del,X: $i] :
( ( mem @ X @ A )
=> ! [Y: $i] :
( ( mem @ Y @ A )
=> ( ( p @ ( ap @ ( ap @ ( c_2Emin_2E_3D @ A ) @ X ) @ Y ) )
<=> ( X = Y ) ) ) ) ).
thf(tp_c_2Emin_2E_3D_3D_3E,type,
c_2Emin_2E_3D_3D_3E: $i ).
thf(mem_c_2Emin_2E_3D_3D_3E,axiom,
mem @ c_2Emin_2E_3D_3D_3E @ ( arr @ bool @ ( arr @ bool @ bool ) ) ).
thf(ax_imp_p,axiom,
! [Q: $i] :
( ( mem @ Q @ bool )
=> ! [R: $i] :
( ( mem @ R @ bool )
=> ( ( p @ ( ap @ ( ap @ c_2Emin_2E_3D_3D_3E @ Q ) @ R ) )
<=> ( ( p @ Q )
=> ( p @ R ) ) ) ) ) ).
thf(tp_c_2Emin_2E_40,type,
c_2Emin_2E_40: del > $i ).
thf(mem_c_2Emin_2E_40,axiom,
! [A_27a: del] : ( mem @ ( c_2Emin_2E_40 @ A_27a ) @ ( arr @ ( arr @ A_27a @ bool ) @ A_27a ) ) ).
%------------------------------------------------------------------------------