ITP001 Axioms: ITP001_2.ax
%------------------------------------------------------------------------------
% File : ITP001_2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, bushy and chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% Source : [BG+19]
% Names : HL4001_2.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 14 ( 0 unt; 9 typ; 0 def)
% Number of atoms : 17 ( 5 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 12 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 10 ( 6 >; 4 *; 0 +; 0 <<)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 16 ( 16 !; 0 ?; 16 :)
% SPC : TF0_SAT_EQU_NAR
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
tff(del,type,
del: $tType ).
tff(bool,type,
bool: del ).
tff(ind,type,
ind: del ).
tff(arr,type,
arr: ( del * del ) > del ).
tff(mem,type,
mem: ( $i * del ) > $o ).
tff(ap,type,
ap: ( $i * $i ) > $i ).
tff(k,type,
k: ( del * $i ) > $i ).
tff(i,type,
i: del > $i ).
tff(p,type,
p: $i > $o ).
tff(ap_tp,axiom,
! [A: del,B: del,F: $i] :
( mem(F,arr(A,B))
=> ! [X: $i] :
( mem(X,A)
=> mem(ap(F,X),B) ) ) ).
tff(boolext,axiom,
! [Q: $i] :
( mem(Q,bool)
=> ! [R: $i] :
( mem(R,bool)
=> ( ( p(Q)
<=> p(R) )
=> ( Q = R ) ) ) ) ).
tff(funcext,axiom,
! [A: del,B: del,F: $i] :
( mem(F,arr(A,B))
=> ! [G: $i] :
( mem(G,arr(A,B))
=> ( ! [X: $i] :
( mem(X,A)
=> ( ap(F,X) = ap(G,X) ) )
=> ( F = G ) ) ) ) ).
tff(kbeta,axiom,
! [A: del,Y: $i,X: $i] :
( mem(X,A)
=> ( ap(k(A,Y),X) = Y ) ) ).
tff(ibeta,axiom,
! [A: del,X: $i] :
( mem(X,A)
=> ( ap(i(A),X) = X ) ) ).
%------------------------------------------------------------------------------