ITP001 Axioms: ITP001+2.ax
%------------------------------------------------------------------------------
% File : ITP001+2 : TPTP v9.0.0. Bugfixed v7.5.0.
% Domain : Interactive Theorem Proving
% Axioms : HOL4 set theory export, bushy and chainy mode
% Version : [BG+19] axioms.
% English :
% Refs : [BG+19] Brown et al. (2019), GRUNGE: A Grand Unified ATP Chall
% Source : [BG+19]
% Names : HL4001+2.ax [TPAP]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 2 unt; 0 def)
% Number of atoms : 22 ( 5 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 14 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 18 ( 18 !; 0 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
% Bugfixes : v7.5.0 - Fixes to the axioms.
%------------------------------------------------------------------------------
fof(bool_ne,axiom,
ne(bool) ).
fof(ind_ne,axiom,
ne(ind) ).
fof(arr_ne,axiom,
! [A] :
( ne(A)
=> ! [B] :
( ne(B)
=> ne(arr(A,B)) ) ) ).
fof(ap_tp,axiom,
! [A,B,F] :
( mem(F,arr(A,B))
=> ! [X] :
( mem(X,A)
=> mem(ap(F,X),B) ) ) ).
fof(boolext,axiom,
! [Q] :
( mem(Q,bool)
=> ! [R] :
( mem(R,bool)
=> ( ( p(Q)
<=> p(R) )
=> Q = R ) ) ) ).
fof(funcext,axiom,
! [A,B,F] :
( mem(F,arr(A,B))
=> ! [G] :
( mem(G,arr(A,B))
=> ( ! [X] :
( mem(X,A)
=> ap(F,X) = ap(G,X) )
=> F = G ) ) ) ).
fof(kbeta,axiom,
! [A,Y,X] :
( mem(X,A)
=> ap(k(A,Y),X) = Y ) ).
fof(ibeta,axiom,
! [A,X] :
( mem(X,A)
=> ap(i(A),X) = X ) ).
%------------------------------------------------------------------------------