TPTP Documents File: GeneratorList


-------------------------------------------------------------------------------
Generators 87 generators (49 abstract, 86 CNF, 1 FOF, 0 TFF, 0 THF)
-------------------------------------------------------------------------------
GRP123 ( -8 +0 _0 ^0) (3,2,1) conjugate orthogonality
GRP123-1        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP123-2        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP123-3        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP123-4        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP123-6        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP123-7        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP123-8        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP123-9        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP124 ( -8 +0 _0 ^0) (3,1,2) conjugate orthogonality
GRP124-1        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-2        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-3        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-4        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-6        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-7        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-8        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP124-9        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP125 ( -4 +0 _0 ^0) (a.b).(b.a) = a
GRP125-1        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP125-2        Sizes: X,(X>=1)                  TPTP sizes: 5,4
GRP125-3        Sizes: X,(X>=1)                  TPTP sizes: 5,4
GRP125-4        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP126 ( -4 +0 _0 ^0) (a.b).(b.a) = b
GRP126-1        Sizes: X,(X>=3)                  TPTP sizes: 4,5
GRP126-2        Sizes: X,(X>=3)                  TPTP sizes: 4,5
GRP126-3        Sizes: X,(X>=3)                  TPTP sizes: 4,5
GRP126-4        Sizes: X,(X>=3)                  TPTP sizes: 4,5
GRP127 ( -4 +0 _0 ^0) ((b.a).b).b) = a
GRP127-1        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP127-2        Sizes: X,(X>=1)                  TPTP sizes: 6,5
GRP127-3        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP127-4        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP128 ( -4 +0 _0 ^0) (a.b).b = a.(a.b)
GRP128-1        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP128-2        Sizes: X,(X>=1)                  TPTP sizes: 6,4
GRP128-3        Sizes: X,(X>=1)                  TPTP sizes: 5,4
GRP128-4        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP129 ( -4 +0 _0 ^0) a.(b.a) = (b.a).b
GRP129-1        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP129-2        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP129-3        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP129-4        Sizes: X,(X>=1)                  TPTP sizes: 4,5
GRP130 ( -4 +0 _0 ^0) (a.(a.b)).b = a
GRP130-1        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP130-2        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP130-3        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP130-4        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP131 ( -2 +0 _0 ^0) (3,2,1) conjugate orthogonality, no idempotence
GRP131-1        Sizes: X,(X>=1)                  TPTP sizes: 2,5
GRP131-2        Sizes: X,(X>=1)                  TPTP sizes: 2,5
GRP132 ( -2 +0 _0 ^0) (3,1,2) conjugate orthogonality, no idempotence
GRP132-1        Sizes: X,(X>=1)                  TPTP sizes: 2,5
GRP132-2        Sizes: X,(X>=1)                  TPTP sizes: 2,5
GRP133 ( -2 +0 _0 ^0) (a.b).(b.a) = a, no idempotence
GRP133-1        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP133-2        Sizes: X,(X>=1)                  TPTP sizes: 3,4
GRP134 ( -2 +0 _0 ^0) (a.b).(b.a) = b, no idempotence
GRP134-1        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP134-2        Sizes: X,(X>=1)                  TPTP sizes: 3,5
GRP135 ( -2 +0 _0 ^0) ((b.a).b).b) = a, no idempotence
GRP135-1        Sizes: X,(X>=1)                  TPTP sizes: 2,5
GRP135-2        Sizes: X,(X>=1)                  TPTP sizes: 2,5
MSC007 ( -2 +0 _0 ^0) Cook pigeon-hole problem
MSC007-1        Sizes: X,(X>=2)                  TPTP sizes: 8
MSC007-2        Sizes: X,(X>=2)                  TPTP sizes: 5
MSC008 ( -1 +0 _0 ^0) The (in)constructability of Graeco-Latin Squares
MSC008-1        Sizes: X,(X>=2,X mod 4 =:= 2)    TPTP sizes: 2,10
NUM283 ( -1 +0 _0 ^0) Calculation of factorial
NUM283-1        Sizes: X,(X>=1)                  TPTP sizes: 5
NUM284 ( -1 +0 _0 ^0) Calculation of fibonacci numbers
NUM284-1        Sizes: X,(X>=1)                  TPTP sizes: 14
PUZ015 ( -1 +0 _0 ^0) Checkerboard and Dominoes : Opposing corners removed
PUZ015-2        Sizes: X,(X>=2)                  TPTP sizes: 6
PUZ016 ( -1 +0 _0 ^0) Checkerboard and Dominoes : Row 1, columns 2 and 3 removed
PUZ016-2        Sizes: X,(X>=3)                  TPTP sizes: 5,4
PUZ034 ( -1 +0 _0 ^0) N queens problem
PUZ034-1        Sizes: X,(X>=2)                  TPTP sizes: 4,3
PUZ036 ( -1 +0 _0 ^0) TopSpin
PUZ036-1        Sizes: X,(X>=1,20>=X)            TPTP sizes: 5
SYN001 ( -1 +0 _0 ^0) All signed combinations of some propositions.
SYN001-1        Sizes: X,(X>=1)                  TPTP sizes: 5
SYN002 ( -1 +0 _0 ^0) Odd and Even Problem
SYN002-1        Sizes: X:Y,(X>=1,Y>X,(X+Y) mod 2 =:= 1) TPTP sizes: 7:8
SYN003 ( -1 +0 _0 ^0) Implications that form a contradiction
SYN003-1        Sizes: X,(X>=2)                  TPTP sizes: 6
SYN004 ( -1 +0 _0 ^0) Implications that form a contradiction
SYN004-1        Sizes: X,(X>=2)                  TPTP sizes: 7
SYN005 ( -1 +0 _0 ^0) Disjunctions that form a contradiction
SYN005-1        Sizes: X,(X>=1)                  TPTP sizes: 10
SYN007 ( -0 +1 _0 ^0) Pelletier Problem 71
SYN007+1        Sizes: X,(X>=1)                  TPTP sizes: 14
SYN010 ( -1 +0 _0 ^0) Example for Proposition 5.2 in [LMG94]
SYN010-1        Sizes: X:Y,(X>=1,Y>=1)           TPTP sizes: 5:5
SYN085 ( -1 +0 _0 ^0) Plaisted problem s(1,SIZE)
SYN085-1        Sizes: X,(X>=0)                  TPTP sizes: 10
SYN086 ( -1 +0 _0 ^0) Plaisted problem s(2,SIZE)
SYN086-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN087 ( -1 +0 _0 ^0) Plaisted problem s(3,SIZE)
SYN087-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN088 ( -1 +0 _0 ^0) Plaisted problem s(4,SIZE)
SYN088-1        Sizes: X,(X>=1)                  TPTP sizes: 10
SYN089 ( -1 +0 _0 ^0) Plaisted problem t(2,SIZE)
SYN089-1        Sizes: X,(X>=1)                  TPTP sizes: 2
SYN090 ( -1 +0 _0 ^0) Plaisted problem t(3,SIZE)
SYN090-1        Sizes: X,(X>=1)                  TPTP sizes: 8
SYN091 ( -1 +0 _0 ^0) Plaisted problem sym(s(2,SIZE))
SYN091-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN092 ( -1 +0 _0 ^0) Plaisted problem sym(s(3,SIZE))
SYN092-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN093 ( -1 +0 _0 ^0) Plaisted problem u(t(2,SIZE))
SYN093-1        Sizes: X,(X>=1)                  TPTP sizes: 2
SYN094 ( -1 +0 _0 ^0) Plaisted problem u(t(3,SIZE))
SYN094-1        Sizes: X,(X>=1)                  TPTP sizes: 5
SYN095 ( -1 +0 _0 ^0) Plaisted problem m(t(2,SIZE))
SYN095-1        Sizes: X,(X>=1)                  TPTP sizes: 2
SYN096 ( -1 +0 _0 ^0) Plaisted problem m(t(3,SIZE))
SYN096-1        Sizes: X,(X>=1)                  TPTP sizes: 8
SYN097 ( -1 +0 _0 ^0) Plaisted problem sym(u(t(2,SIZE)))
SYN097-1        Sizes: X,(X>=1)                  TPTP sizes: 2
SYN098 ( -1 +0 _0 ^0) Plaisted problem sym(u(t(3,SIZE)))
SYN098-1        Sizes: X,(X>=1)                  TPTP sizes: 2
SYN099 ( -1 +0 _0 ^0) Plaisted problem sym(m(t(2,SIZE)))
SYN099-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN100 ( -1 +0 _0 ^0) Plaisted problem sym(m(t(3,SIZE)))
SYN100-1        Sizes: X,(X>=1)                  TPTP sizes: 5
SYN101 ( -1 +0 _0 ^0) Plaisted problem n(t(2,SIZE1),SIZE2)
SYN101-1        Sizes: X:Y,(X>=1,Y>=1)           TPTP sizes: 2:2
SYN102 ( -1 +0 _0 ^0) Plaisted problem n(t(3,SIZE1),SIZE2)
SYN102-1        Sizes: X:Y,(X>=1,Y>=1)           TPTP sizes: 7:7
SYN302 ( -1 +0 _0 ^0) Plaisted problem a(SIZE)
SYN302-1        Sizes: X,(X>=1)                  TPTP sizes: 3
SYN313 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN313-1        Sizes: X:Y,(X>=1,Y>=1)           TPTP sizes: 1:2
SYN314 ( -1 +0 _0 ^0) Problem for testing satisfiability
SYN314-1        Sizes: X:Y,(X>=0,Y>=0)           TPTP sizes: 2:1