TPTP Axioms File: SWV014_0.ax
%------------------------------------------------------------------------------
% File : SWV014_0 : TPTP v9.1.0. Released v9.1.0.
% Domain : Software Verification
% Axioms : Anthem standard preamble
% Version : [Han25] axioms : Especial.
% English :
% Refs : [FL+20] Fandinno et al. (2020), Verifying Tight Logic Programs
% : [FH+23] Fandinno et al. (2023), External Behavior of a Logic P
% : [Han25] Hansen (2025), Email to Geoff Sutcliffe
% Source : [Han25]
% Names : standard_preamble.ax [Han25]
% Status : Satisfiable
% Syntax : Number of formulae : 27 ( 3 unt; 12 typ; 0 def)
% Number of atoms : 33 ( 11 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 20 ( 2 ~; 4 |; 4 &)
% ( 8 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 1 atm; 0 fun; 0 num; 7 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 12 ( 8 >; 4 *; 0 +; 0 <<)
% Number of predicates : 8 ( 6 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-1 aty)
% Number of variables : 28 ( 26 !; 2 ?; 28 :)
% SPC : TF0_SAT_EQU_ARI
% Comments : From https://github.com/ZachJHansen/anthem-benchmarks/tree/tptp
%------------------------------------------------------------------------------
tff(general_type,type,
general: $tType ).
tff(symbol_type,type,
symbol: $tType ).
tff(f__integer___decl,type,
f__integer__: $int > general ).
tff(f__symbolic___decl,type,
f__symbolic__: symbol > general ).
tff(inf_type,type,
c__infimum__: general ).
tff(sup_type,type,
c__supremum__: general ).
tff(p__is_integer__decl,type,
p__is_integer__: general > $o ).
tff(p__is_symbolic__decl,type,
p__is_symbolic__: general > $o ).
tff(p__less_equal__decl,type,
p__less_equal__: ( general * general ) > $o ).
tff(p__less__decl,type,
p__less__: ( general * general ) > $o ).
tff(p__greater_equal__decl,type,
p__greater_equal__: ( general * general ) > $o ).
tff(p__greater__decl,type,
p__greater__: ( general * general ) > $o ).
tff(p__is_integer__def_ax,axiom,
! [X: general] :
( p__is_integer__(X)
<=> ? [N: $int] : ( X = f__integer__(N) ) ) ).
tff(p__is_symbolic__def_ax,axiom,
! [X1: general] :
( p__is_symbolic__(X1)
<=> ? [X2: symbol] : ( X1 = f__symbolic__(X2) ) ) ).
tff(general_universe_ax,axiom,
! [X: general] :
( ( X = c__infimum__ )
| p__is_integer__(X)
| p__is_symbolic__(X)
| ( X = c__supremum__ ) ) ).
tff(f__integer__def_ax,axiom,
! [N1: $int,N2: $int] :
( ( f__integer__(N1) = f__integer__(N2) )
<=> ( N1 = N2 ) ) ).
tff(f__symbolic__def_ax,axiom,
! [S1: symbol,S2: symbol] :
( ( f__symbolic__(S1) = f__symbolic__(S2) )
<=> ( S1 = S2 ) ) ).
tff(numeral_ordering_ax,axiom,
! [N1: $int,N2: $int] :
( p__less_equal__(f__integer__(N1),f__integer__(N2))
<=> $lesseq(N1,N2) ) ).
tff(antisymmetric_ordering_ax,axiom,
! [X1: general,X2: general] :
( ( p__less_equal__(X1,X2)
& p__less_equal__(X2,X1) )
=> ( X1 = X2 ) ) ).
tff(transitive_ordering_ax,axiom,
! [X1: general,X2: general,X3: general] :
( ( p__less_equal__(X1,X2)
& p__less_equal__(X2,X3) )
=> p__less_equal__(X1,X3) ) ).
tff(strongly_connected_ordering_ax,axiom,
! [X1: general,X2: general] :
( p__less_equal__(X1,X2)
| p__less_equal__(X2,X1) ) ).
tff(p__less__def_ax,axiom,
! [X1: general,X2: general] :
( p__less__(X1,X2)
<=> ( p__less_equal__(X1,X2)
& ( X1 != X2 ) ) ) ).
tff(p__greater_equal__def_ax,axiom,
! [X1: general,X2: general] :
( p__greater_equal__(X1,X2)
<=> p__less_equal__(X2,X1) ) ).
tff(p__greater__def_ax,axiom,
! [X1: general,X2: general] :
( p__greater__(X1,X2)
<=> ( p__less_equal__(X2,X1)
& ( X1 != X2 ) ) ) ).
tff(minimal_element_ax,axiom,
! [N: $int] : p__less__(c__infimum__,f__integer__(N)) ).
tff(numerals_less_than_symbols_ax,axiom,
! [N: $int,S: symbol] : p__less__(f__integer__(N),f__symbolic__(S)) ).
tff(maximal_element_ax,axiom,
! [S: symbol] : p__less__(f__symbolic__(S),c__supremum__) ).
%------------------------------------------------------------------------------