TPTP Axioms File: SET010+0.ax
%------------------------------------------------------------------------------
% File : SET006+0 : TPTP v9.1.0. Released v9.1.0.
% Domain : Set Theory
% Axioms : Hereditary finite sets
% Version : [Bro24] axioms.
% English :
% Refs : [Bro24a] Brown (2024), Email to G. Sutcliffe
% : [Bro24] Brown (2024), Simple Difficult Problems for Automated
% Source : [Bro24a]
% Names : hf.ax [Bro24a]
% Status : Satisfiable
% Syntax : Number of formulae : 25 ( 3 unt; 0 def)
% Number of atoms : 81 ( 4 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 74 ( 18 ~; 1 |; 31 &)
% ( 21 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 19 ( 18 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 52 ( 36 !; 16 ?)
% SPC : FOF_SAT_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(subq_def,axiom,
! [X,Y] :
( subq(X,Y)
<=> ! [Z] :
( mem(Z,X)
=> mem(Z,Y) ) ) ).
fof(setext,axiom,
! [X,Y] :
( subq(X,Y)
=> ( subq(Y,X)
=> X = Y ) ) ).
fof(disj_def,axiom,
! [X,Y] :
( disj(X,Y)
<=> ~ ? [Z] :
( mem(Z,X)
& mem(Z,Y) ) ) ).
fof(e_ax,axiom,
! [X] : ~ mem(X,e) ).
fof(s_ax,axiom,
! [X,Y] :
( mem(X,s(Y))
<=> X = Y ) ).
fof(u_ax,axiom,
! [X,Y,Z] :
( mem(X,u(Y,Z))
<=> ( mem(X,Y)
| mem(X,Z) ) ) ).
fof(m_ax,axiom,
! [X,Y,Z] :
( mem(X,m(Y,Z))
<=> ( mem(X,Y)
& ~ mem(X,Z) ) ) ).
fof(a_def,axiom,
! [X,Y] : a(X,Y) = u(X,s(Y)) ).
fof(n_def,axiom,
! [X] : n(X) = a(X,X) ).
fof(p_ax,axiom,
! [X,Y] :
( mem(X,p(Y))
<=> subq(X,Y) ) ).
fof(atleast2p_def,axiom,
! [X] :
( atleast2p(X)
<=> ? [Y] :
( mem(Y,X)
& ~ subq(X,p(Y)) ) ) ).
fof(atleast3p_def,axiom,
! [X] :
( atleast3p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast2p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast4p_def,axiom,
! [X] :
( atleast4p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast3p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast5p_def,axiom,
! [X] :
( atleast5p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast4p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast6p_def,axiom,
! [X] :
( atleast6p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast5p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast7p_def,axiom,
! [X] :
( atleast7p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast6p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast8p_def,axiom,
! [X] :
( atleast8p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast7p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast9p_def,axiom,
! [X] :
( atleast9p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast8p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast10p_def,axiom,
! [X] :
( atleast10p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast9p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast11p_def,axiom,
! [X] :
( atleast11p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast10p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast12p_def,axiom,
! [X] :
( atleast12p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast11p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast13p_def,axiom,
! [X] :
( atleast13p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast12p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast14p_def,axiom,
! [X] :
( atleast14p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast13p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast15p_def,axiom,
! [X] :
( atleast15p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast14p(Y)
& ~ subq(X,Y) ) ) ).
fof(atleast16p_def,axiom,
! [X] :
( atleast16p(X)
<=> ? [Y] :
( subq(Y,X)
& atleast15p(Y)
& ~ subq(X,Y) ) ) ).
%------------------------------------------------------------------------------