TPTP Axioms File: SET008^1.ax
%------------------------------------------------------------------------------
% File : SET008^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Axioms : Definitions for functions
% Version : [Ben08] axioms.
% English :
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2007), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names : Typed_Function [Ben08]
% Status : Satisfiable
% Syntax : Number of formulae : 16 ( 8 unt; 8 typ; 8 def)
% Number of atoms : 22 ( 13 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 29 ( 0 ~; 0 |; 3 &; 23 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg; 23 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 46 ( 46 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 0 con; 1-3 aty)
% Number of variables : 26 ( 16 ^ 7 !; 3 ?; 26 :)
% SPC :
% Comments : Requires SET008^0.
%------------------------------------------------------------------------------
thf(fun_image_decl,type,
fun_image: ( $i > $i ) > ( $i > $o ) > $i > $o ).
thf(fun_image,definition,
( fun_image
= ( ^ [F: $i > $i,A: $i > $o,Y: $i] :
? [X: $i] :
( ( A @ X )
& ( Y
= ( F @ X ) ) ) ) ) ).
thf(fun_composition_decl,type,
fun_composition: ( $i > $i ) > ( $i > $i ) > $i > $i ).
thf(fun_composition,definition,
( fun_composition
= ( ^ [F: $i > $i,G: $i > $i,X: $i] : ( G @ ( F @ X ) ) ) ) ).
thf(fun_inv_image_decl,type,
fun_inv_image: ( $i > $i ) > ( $i > $o ) > $i > $o ).
thf(fun_inv_image,definition,
( fun_inv_image
= ( ^ [F: $i > $i,B: $i > $o,X: $i] :
? [Y: $i] :
( ( B @ Y )
& ( Y
= ( F @ X ) ) ) ) ) ).
thf(fun_injective_decl,type,
fun_injective: ( $i > $i ) > $o ).
thf(fun_injective,definition,
( fun_injective
= ( ^ [F: $i > $i] :
! [X: $i,Y: $i] :
( ( ( F @ X )
= ( F @ Y ) )
=> ( X = Y ) ) ) ) ).
thf(fun_surjective_decl,type,
fun_surjective: ( $i > $i ) > $o ).
thf(fun_surjective,definition,
( fun_surjective
= ( ^ [F: $i > $i] :
! [Y: $i] :
? [X: $i] :
( Y
= ( F @ X ) ) ) ) ).
thf(fun_bijective_decl,type,
fun_bijective: ( $i > $i ) > $o ).
thf(fun_bijective,definition,
( fun_bijective
= ( ^ [F: $i > $i] :
( ( fun_injective @ F )
& ( fun_surjective @ F ) ) ) ) ).
thf(fun_decreasing_decl,type,
fun_decreasing: ( $i > $i ) > ( $i > $i > $o ) > $o ).
thf(fun_decreasing,definition,
( fun_decreasing
= ( ^ [F: $i > $i,SMALLER: $i > $i > $o] :
! [X: $i,Y: $i] :
( ( SMALLER @ X @ Y )
=> ( SMALLER @ ( F @ Y ) @ ( F @ X ) ) ) ) ) ).
thf(fun_increasing_decl,type,
fun_increasing: ( $i > $i ) > ( $i > $i > $o ) > $o ).
thf(fun_increasing,definition,
( fun_increasing
= ( ^ [F: $i > $i,SMALLER: $i > $i > $o] :
! [X: $i,Y: $i] :
( ( SMALLER @ X @ Y )
=> ( SMALLER @ ( F @ X ) @ ( F @ Y ) ) ) ) ) ).
%------------------------------------------------------------------------------