TPTP Axioms File: SET008^0.ax
%------------------------------------------------------------------------------
% File : SET008^0 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory
% Axioms : Basic set theory definitions
% Version : [Ben08] axioms.
% English :
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi
% : [BS+08] Benzmueller et al. (2007), Combined Reasoning by Autom
% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe
% Source : [Ben08]
% Names : Typed_Set [Ben08]
% Status : Satisfiable
% Syntax : Number of formulae : 28 ( 14 unt; 14 typ; 14 def)
% Number of atoms : 35 ( 18 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 36 ( 5 ~; 3 |; 6 &; 21 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg; 21 nst)
% Number of types : 2 ( 0 usr)
% Number of type conns : 70 ( 70 >; 0 *; 0 +; 0 <<)
% Number of symbols : 16 ( 14 usr; 1 con; 0-3 aty)
% Number of variables : 35 ( 32 ^ 1 !; 2 ?; 35 :)
% SPC :
% Comments :
%------------------------------------------------------------------------------
thf(in_decl,type,
in: $i > ( $i > $o ) > $o ).
thf(in,definition,
( in
= ( ^ [X: $i,M: $i > $o] : ( M @ X ) ) ) ).
thf(is_a_decl,type,
is_a: $i > ( $i > $o ) > $o ).
thf(is_a,definition,
( is_a
= ( ^ [X: $i,M: $i > $o] : ( M @ X ) ) ) ).
thf(emptyset_decl,type,
emptyset: $i > $o ).
thf(emptyset,definition,
( emptyset
= ( ^ [X: $i] : $false ) ) ).
thf(unord_pair_decl,type,
unord_pair: $i > $i > $i > $o ).
thf(unord_pair,definition,
( unord_pair
= ( ^ [X: $i,Y: $i,U: $i] :
( ( U = X )
| ( U = Y ) ) ) ) ).
thf(singleton_decl,type,
singleton: $i > $i > $o ).
thf(singleton,definition,
( singleton
= ( ^ [X: $i,U: $i] : ( U = X ) ) ) ).
thf(union_decl,type,
union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(union,definition,
( union
= ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
( ( X @ U )
| ( Y @ U ) ) ) ) ).
thf(excl_union_decl,type,
excl_union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(excl_union,definition,
( excl_union
= ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
( ( ( X @ U )
& ~ ( Y @ U ) )
| ( ~ ( X @ U )
& ( Y @ U ) ) ) ) ) ).
thf(intersection_decl,type,
intersection: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(intersection,definition,
( intersection
= ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
( ( X @ U )
& ( Y @ U ) ) ) ) ).
thf(setminus_decl,type,
setminus: ( $i > $o ) > ( $i > $o ) > $i > $o ).
thf(setminus,definition,
( setminus
= ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
( ( X @ U )
& ~ ( Y @ U ) ) ) ) ).
thf(complement_decl,type,
complement: ( $i > $o ) > $i > $o ).
thf(complement,definition,
( complement
= ( ^ [X: $i > $o,U: $i] :
~ ( X @ U ) ) ) ).
thf(disjoint_decl,type,
disjoint: ( $i > $o ) > ( $i > $o ) > $o ).
thf(disjoint,definition,
( disjoint
= ( ^ [X: $i > $o,Y: $i > $o] :
( ( intersection @ X @ Y )
= emptyset ) ) ) ).
thf(subset_decl,type,
subset: ( $i > $o ) > ( $i > $o ) > $o ).
thf(subset,definition,
( subset
= ( ^ [X: $i > $o,Y: $i > $o] :
! [U: $i] :
( ( X @ U )
=> ( Y @ U ) ) ) ) ).
thf(meets_decl,type,
meets: ( $i > $o ) > ( $i > $o ) > $o ).
thf(meets,definition,
( meets
= ( ^ [X: $i > $o,Y: $i > $o] :
? [U: $i] :
( ( X @ U )
& ( Y @ U ) ) ) ) ).
thf(misses_decl,type,
misses: ( $i > $o ) > ( $i > $o ) > $o ).
thf(misses,definition,
( misses
= ( ^ [X: $i > $o,Y: $i > $o] :
~ ? [U: $i] :
( ( X @ U )
& ( Y @ U ) ) ) ) ).
%------------------------------------------------------------------------------