TPTP Axioms File: SET006+4.ax
%------------------------------------------------------------------------------
% File : SET006+4 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Axioms : Ordinal numbers for the SET006+0 set theory axioms
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 0 unt; 0 def)
% Number of atoms : 36 ( 1 equ)
% Maximal formula atoms : 11 ( 4 avg)
% Number of connectives : 29 ( 1 ~; 1 |; 12 &)
% ( 7 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-3 aty)
% Number of variables : 28 ( 26 !; 2 ?)
% SPC :
% Comments : Requires SET006+0.ax
%------------------------------------------------------------------------------
%---- Ordinal numbers and strict order relations
fof(ordinal_number,axiom,
! [A] :
( member(A,on)
<=> ( set(A)
& strict_well_order(member_predicate,A)
& ! [X] :
( member(X,A)
=> subset(X,A) ) ) ) ).
fof(strict_well_order,axiom,
! [R,E] :
( strict_well_order(R,E)
<=> ( strict_order(R,E)
& ! [A] :
( ( subset(A,E)
& ? [X] : member(X,A) )
=> ? [Y] : least(Y,R,A) ) ) ) ).
fof(least,axiom,
! [R,E,M] :
( least(M,R,E)
<=> ( member(M,E)
& ! [X] :
( member(X,E)
=> ( M = X
| apply(R,M,X) ) ) ) ) ).
fof(rel_member,axiom,
! [X,Y] :
( apply(member_predicate,X,Y)
<=> member(X,Y) ) ).
fof(strict_order,axiom,
! [R,E] :
( strict_order(R,E)
<=> ( ! [X,Y] :
( ( member(X,E)
& member(Y,E) )
=> ~ ( apply(R,X,Y)
& apply(R,Y,X) ) )
& ! [X,Y,Z] :
( ( member(X,E)
& member(Y,E)
& member(Z,E) )
=> ( ( apply(R,X,Y)
& apply(R,Y,Z) )
=> apply(R,X,Z) ) ) ) ) ).
fof(set_member,axiom,
! [X] :
( set(X)
=> ! [Y] :
( member(Y,X)
=> set(Y) ) ) ).
fof(initial_segment,axiom,
! [X,R,A,Y] :
( member(Y,initial_segment(X,R,A))
<=> ( member(Y,A)
& apply(R,Y,X) ) ) ).
fof(successor,axiom,
! [A,X] :
( member(X,suc(A))
<=> member(X,union(A,singleton(A))) ) ).
%------------------------------------------------------------------------------