TPTP Axioms File: SET006+3.ax
%------------------------------------------------------------------------------
% File : SET006+3 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Axioms : Order relation (Naive set theory)
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 10 ( 0 unt; 0 def)
% Number of atoms : 56 ( 3 equ)
% Maximal formula atoms : 14 ( 5 avg)
% Number of connectives : 46 ( 0 ~; 1 |; 21 &)
% ( 10 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 9 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 2-4 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 46 ( 46 !; 0 ?)
% SPC :
% Comments : Requires SET006+0.ax
%------------------------------------------------------------------------------
%----Order relations
fof(order,axiom,
! [R,E] :
( order(R,E)
<=> ( ! [X] :
( member(X,E)
=> apply(R,X,X) )
& ! [X,Y] :
( ( member(X,E)
& member(Y,E) )
=> ( ( apply(R,X,Y)
& apply(R,Y,X) )
=> X = Y ) )
& ! [X,Y,Z] :
( ( member(X,E)
& member(Y,E)
& member(Z,E) )
=> ( ( apply(R,X,Y)
& apply(R,Y,Z) )
=> apply(R,X,Z) ) ) ) ) ).
fof(total_order,axiom,
! [R,E] :
( total_order(R,E)
<=> ( order(R,E)
& ! [X,Y] :
( ( member(X,E)
& member(Y,E) )
=> ( apply(R,X,Y)
| apply(R,Y,X) ) ) ) ) ).
fof(upper_bound,axiom,
! [R,E,M] :
( upper_bound(M,R,E)
<=> ! [X] :
( member(X,E)
=> apply(R,X,M) ) ) ).
fof(lower_bound,axiom,
! [R,E,M] :
( lower_bound(M,R,E)
<=> ! [X] :
( member(X,E)
=> apply(R,M,X) ) ) ).
fof(greatest,axiom,
! [R,E,M] :
( greatest(M,R,E)
<=> ( member(M,E)
& ! [X] :
( member(X,E)
=> apply(R,X,M) ) ) ) ).
fof(least,axiom,
! [R,E,M] :
( least(M,R,E)
<=> ( member(M,E)
& ! [X] :
( member(X,E)
=> apply(R,M,X) ) ) ) ).
fof(max,axiom,
! [R,E,M] :
( max(M,R,E)
<=> ( member(M,E)
& ! [X] :
( ( member(X,E)
& apply(R,M,X) )
=> M = X ) ) ) ).
fof(min,axiom,
! [R,E,M] :
( min(M,R,E)
<=> ( member(M,E)
& ! [X] :
( ( member(X,E)
& apply(R,X,M) )
=> M = X ) ) ) ).
fof(least_upper_bound,axiom,
! [A,X,R,E] :
( least_upper_bound(A,X,R,E)
<=> ( member(A,X)
& upper_bound(A,R,X)
& ! [M] :
( ( member(M,E)
& upper_bound(M,R,X) )
=> apply(R,A,M) ) ) ) ).
fof(greatest_lower_bound,axiom,
! [A,X,R,E] :
( greatest_lower_bound(A,X,R,E)
<=> ( member(A,X)
& lower_bound(A,R,X)
& ! [M] :
( ( member(M,E)
& lower_bound(M,R,X) )
=> apply(R,M,A) ) ) ) ).
%------------------------------------------------------------------------------