TPTP Axioms File: SET006+2.ax
%--------------------------------------------------------------------------
% File : SET006+2 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Axioms : Equivalence relation axioms for the SET006+0 set theory axioms
% Version : [Pas99] axioms.
% English :
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 39 ( 1 equ)
% Maximal formula atoms : 13 ( 7 avg)
% Number of connectives : 35 ( 1 ~; 0 |; 17 &)
% ( 5 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 10 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 2-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 3-3 aty)
% Number of variables : 29 ( 26 !; 3 ?)
% SPC :
% Comments : Requires SET006+0.ax
%--------------------------------------------------------------------------
%----Equivalence relations
fof(disjoint,axiom,
! [A,B] :
( disjoint(A,B)
<=> ~ ? [X] :
( member(X,A)
& member(X,B) ) ) ).
fof(partition,axiom,
! [A,E] :
( partition(A,E)
<=> ( ! [X] :
( member(X,A)
=> subset(X,E) )
& ! [X] :
( member(X,E)
=> ? [Y] :
( member(Y,A)
& member(X,Y) ) )
& ! [X,Y] :
( ( member(X,A)
& member(Y,A) )
=> ( ? [Z] :
( member(Z,X)
& member(Z,Y) )
=> X = Y ) ) ) ) ).
fof(equivalence,axiom,
! [A,R] :
( equivalence(R,A)
<=> ( ! [X] :
( member(X,A)
=> apply(R,X,X) )
& ! [X,Y] :
( ( member(X,A)
& member(Y,A) )
=> ( apply(R,X,Y)
=> apply(R,Y,X) ) )
& ! [X,Y,Z] :
( ( member(X,A)
& member(Y,A)
& member(Z,A) )
=> ( ( apply(R,X,Y)
& apply(R,Y,Z) )
=> apply(R,X,Z) ) ) ) ) ).
fof(equivalence_class,axiom,
! [R,E,A,X] :
( member(X,equivalence_class(A,E,R))
<=> ( member(X,E)
& apply(R,A,X) ) ) ).
fof(pre_order,axiom,
! [R,E] :
( pre_order(R,E)
<=> ( ! [X] :
( member(X,E)
=> apply(R,X,X) )
& ! [X,Y,Z] :
( ( member(X,E)
& member(Y,E)
& member(Z,E) )
=> ( ( apply(R,X,Y)
& apply(R,Y,Z) )
=> apply(R,X,Z) ) ) ) ) ).
%--------------------------------------------------------------------------