TPTP Axioms File: SET006+0.ax
%------------------------------------------------------------------------------
% File : SET006+0 : TPTP v9.0.0. Released v2.2.0.
% Domain : Set Theory
% Axioms : Naive set theory based on Goedel's set theory
% Version : [Pas99] axioms.
% English :
% Refs : [Pas99] Pastre (1999), Email to G. Sutcliffe
% Source : [Pas99]
% Names :
% Status : Satisfiable
% Syntax : Number of formulae : 11 ( 1 unt; 0 def)
% Number of atoms : 29 ( 3 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 20 ( 2 ~; 2 |; 4 &)
% ( 10 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 1 con; 0-2 aty)
% Number of variables : 28 ( 27 !; 1 ?)
% SPC :
% Comments :
%------------------------------------------------------------------------------
%----Axioms of operations on sets
fof(subset,axiom,
! [A,B] :
( subset(A,B)
<=> ! [X] :
( member(X,A)
=> member(X,B) ) ) ).
fof(equal_set,axiom,
! [A,B] :
( equal_set(A,B)
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(power_set,axiom,
! [X,A] :
( member(X,power_set(A))
<=> subset(X,A) ) ).
fof(intersection,axiom,
! [X,A,B] :
( member(X,intersection(A,B))
<=> ( member(X,A)
& member(X,B) ) ) ).
fof(union,axiom,
! [X,A,B] :
( member(X,union(A,B))
<=> ( member(X,A)
| member(X,B) ) ) ).
fof(empty_set,axiom,
! [X] : ~ member(X,empty_set) ).
fof(difference,axiom,
! [B,A,E] :
( member(B,difference(E,A))
<=> ( member(B,E)
& ~ member(B,A) ) ) ).
fof(singleton,axiom,
! [X,A] :
( member(X,singleton(A))
<=> X = A ) ).
fof(unordered_pair,axiom,
! [X,A,B] :
( member(X,unordered_pair(A,B))
<=> ( X = A
| X = B ) ) ).
fof(sum,axiom,
! [X,A] :
( member(X,sum(A))
<=> ? [Y] :
( member(Y,A)
& member(X,Y) ) ) ).
fof(product,axiom,
! [X,A] :
( member(X,product(A))
<=> ! [Y] :
( member(Y,A)
=> member(X,Y) ) ) ).
%------------------------------------------------------------------------------