TPTP Axioms File: SET002-0.ax
%--------------------------------------------------------------------------
% File : SET002-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Set Theory
% Axioms : Set theory axioms
% Version : [MOW76] axioms : Biased.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 21 ( 3 unt; 3 nHn; 15 RR)
% Number of literals : 45 ( 0 equ; 23 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 48 ( 5 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%-----Definition of the empty set.
cnf(empty_set,axiom,
~ member(X,empty_set) ).
%-----Subset axioms. These are the same as in SET001-0.ax
cnf(membership_in_subsets,axiom,
( ~ member(Element,Subset)
| ~ subset(Subset,Superset)
| member(Element,Superset) ) ).
cnf(subsets_axiom1,axiom,
( subset(Subset,Superset)
| member(member_of_1_not_of_2(Subset,Superset),Subset) ) ).
cnf(subsets_axiom2,axiom,
( ~ member(member_of_1_not_of_2(Subset,Superset),Superset)
| subset(Subset,Superset) ) ).
%-----Axioms of complementation.
cnf(member_of_set_or_complement,axiom,
( member(X,Xs)
| member(X,complement(Xs)) ) ).
cnf(not_member_of_set_and_complement,axiom,
( ~ member(X,Xs)
| ~ member(X,complement(Xs)) ) ).
%-----Axioms of union.
cnf(member_of_set1_is_member_of_union,axiom,
( ~ member(X,Xs)
| member(X,union(Xs,Ys)) ) ).
cnf(member_of_set2_is_member_of_union,axiom,
( ~ member(X,Ys)
| member(X,union(Xs,Ys)) ) ).
cnf(member_of_union_is_member_of_one_set,axiom,
( ~ member(X,union(Xs,Ys))
| member(X,Xs)
| member(X,Ys) ) ).
%-----Axioms of intersection.
cnf(member_of_both_is_member_of_intersection,axiom,
( ~ member(X,Xs)
| ~ member(X,Ys)
| member(X,intersection(Xs,Ys)) ) ).
cnf(member_of_intersection_is_member_of_set1,axiom,
( ~ member(X,intersection(Xs,Ys))
| member(X,Xs) ) ).
cnf(member_of_intersection_is_member_of_set2,axiom,
( ~ member(X,intersection(Xs,Ys))
| member(X,Ys) ) ).
%-----Set equality axioms.
cnf(set_equal_sets_are_subsets1,axiom,
( ~ equal_sets(Subset,Superset)
| subset(Subset,Superset) ) ).
cnf(set_equal_sets_are_subsets2,axiom,
( ~ equal_sets(Superset,Subset)
| subset(Subset,Superset) ) ).
cnf(subsets_are_set_equal_sets,axiom,
( ~ subset(Set1,Set2)
| ~ subset(Set2,Set1)
| equal_sets(Set2,Set1) ) ).
%-----Equality axioms.
cnf(reflexivity_for_set_equal,axiom,
equal_sets(Xs,Xs) ).
cnf(symmetry_for_set_equal,axiom,
( ~ equal_sets(Xs,Ys)
| equal_sets(Ys,Xs) ) ).
cnf(transitivity_for_set_equal,axiom,
( ~ equal_sets(Xs,Ys)
| ~ equal_sets(Ys,Zs)
| equal_sets(Xs,Zs) ) ).
cnf(reflexivity_for_equal_elements,axiom,
equal_elements(X,X) ).
cnf(symmetry_for_equal_elements,axiom,
( ~ equal_elements(X,Y)
| equal_elements(Y,X) ) ).
cnf(transitivity_for_equal_elements,axiom,
( ~ equal_elements(X,Y)
| ~ equal_elements(Y,Z)
| equal_elements(X,Z) ) ).
%--------------------------------------------------------------------------