TPTP Axioms File: RNG005-0.ax
%--------------------------------------------------------------------------
% File : RNG005-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Axioms : Ring theory (equality) axioms
% Version : [LW92] (equality) axioms.
% English :
% Refs : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% Source : [LW92]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 9 ( 9 unt; 0 nHn; 0 RR)
% Number of literals : 9 ( 9 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 18 ( 0 sgn)
% SPC :
% Comments : These axioms are used in [Wos88] p.203.
%--------------------------------------------------------------------------
%----There exists an additive identity element
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
cnf(right_additive_identity,axiom,
add(X,additive_identity) = X ).
%----Existence of left additive additive_inverse
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
cnf(right_additive_inverse,axiom,
add(X,additive_inverse(X)) = additive_identity ).
%----Associativity for addition
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity for multiplication
cnf(associativity_for_multiplication,axiom,
multiply(X,multiply(Y,Z)) = multiply(multiply(X,Y),Z) ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%--------------------------------------------------------------------------