TPTP Axioms File: RNG004-0.ax
%--------------------------------------------------------------------------
% File : RNG004-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory (Alternative)
% Axioms : Alternative ring theory (equality) axioms
% Version : [AH90] (equality) axioms.
% English :
% Refs : [AH90] Anantharaman & Hsiang (1990), Automated Proofs of the
% Source : [AH90]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 17 ( 15 unt; 0 nHn; 3 RR)
% Number of literals : 19 ( 19 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 32 ( 2 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----There exists an additive identity element [1]
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
%----Multiplicative identity [2] & [3]
cnf(left_multiplicative_zero,axiom,
multiply(additive_identity,X) = additive_identity ).
cnf(right_multiplicative_zero,axiom,
multiply(X,additive_identity) = additive_identity ).
%----Addition of inverse [4]
cnf(add_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
%----Sum of inverses [5]
cnf(sum_of_inverses,axiom,
additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) ).
%----Inverse of additive_inverse of X is X [6]
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Distribution of multiply over add [7] & [8]
cnf(multiply_over_add1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(multiply_over_add2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Right alternative law [9]
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
%----Left alternative law [10]
cnf(left_alternative,axiom,
multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).
%----Inverse and product [11] & [12]
cnf(inverse_product1,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
cnf(inverse_product2,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
%----Inverse of additive identity [13]
cnf(inverse_additive_identity,axiom,
additive_inverse(additive_identity) = additive_identity ).
%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity for addition
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
%----Left and right cancellation for addition
cnf(left_cancellation_for_addition,axiom,
( add(X,Z) != add(Y,Z)
| X = Y ) ).
cnf(right_cancellation_for_addition,axiom,
( add(Z,X) != add(Z,Y)
| X = Y ) ).
%--------------------------------------------------------------------------