TPTP Axioms File: RNG004-0.ax


%--------------------------------------------------------------------------
% File     : RNG004-0 : TPTP v9.0.0. Released v1.0.0.
% Domain   : Ring Theory (Alternative)
% Axioms   : Alternative ring theory (equality) axioms
% Version  : [AH90] (equality) axioms.
% English  :

% Refs     : [AH90]  Anantharaman & Hsiang (1990), Automated Proofs of the
% Source   : [AH90]
% Names    :

% Status   : Satisfiable
% Syntax   : Number of clauses     :   17 (  15 unt;   0 nHn;   3 RR)
%            Number of literals    :   19 (  19 equ;   2 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    3 (   2 avg)
%            Number of predicates  :    1 (   0 usr;   0 prp; 2-2 aty)
%            Number of functors    :    4 (   4 usr;   1 con; 0-2 aty)
%            Number of variables   :   32 (   2 sgn)
% SPC      : 

% Comments :
%--------------------------------------------------------------------------
%----There exists an additive identity element [1]
cnf(left_additive_identity,axiom,
    add(additive_identity,X) = X ).

%----Multiplicative identity [2] & [3]
cnf(left_multiplicative_zero,axiom,
    multiply(additive_identity,X) = additive_identity ).

cnf(right_multiplicative_zero,axiom,
    multiply(X,additive_identity) = additive_identity ).

%----Addition of inverse [4]
cnf(add_inverse,axiom,
    add(additive_inverse(X),X) = additive_identity ).

%----Sum of inverses [5]
cnf(sum_of_inverses,axiom,
    additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) ).

%----Inverse of additive_inverse of X is X [6]
cnf(additive_inverse_additive_inverse,axiom,
    additive_inverse(additive_inverse(X)) = X ).

%----Distribution of multiply over add [7] & [8]
cnf(multiply_over_add1,axiom,
    multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).

cnf(multiply_over_add2,axiom,
    multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).

%----Right alternative law [9]
cnf(right_alternative,axiom,
    multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).

%----Left alternative law [10]
cnf(left_alternative,axiom,
    multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).

%----Inverse and product [11] & [12]
cnf(inverse_product1,axiom,
    multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).

cnf(inverse_product2,axiom,
    multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).

%----Inverse of additive identity [13]
cnf(inverse_additive_identity,axiom,
    additive_inverse(additive_identity) = additive_identity ).

%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
    add(X,Y) = add(Y,X) ).

%----Associativity for addition
cnf(associativity_for_addition,axiom,
    add(X,add(Y,Z)) = add(add(X,Y),Z) ).

%----Left and right cancellation for addition
cnf(left_cancellation_for_addition,axiom,
    ( add(X,Z) != add(Y,Z)
    | X = Y ) ).

cnf(right_cancellation_for_addition,axiom,
    ( add(Z,X) != add(Z,Y)
    | X = Y ) ).

%--------------------------------------------------------------------------