TPTP Axioms File: RNG003-0.ax
%--------------------------------------------------------------------------
% File : RNG003-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory (Alternative)
% Axioms : Alternative ring theory (equality) axioms
% Version : [Ste87] (equality) axioms.
% English :
% Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin
% Source : [Ste87]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 15 ( 15 unt; 0 nHn; 0 RR)
% Number of literals : 15 ( 15 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-3 aty)
% Number of variables : 27 ( 2 sgn)
% SPC :
% Comments :
%--------------------------------------------------------------------------
%----There exists an additive identity element
cnf(left_additive_identity,axiom,
add(additive_identity,X) = X ).
cnf(right_additive_identity,axiom,
add(X,additive_identity) = X ).
%----Multiplicative zero
cnf(left_multiplicative_zero,axiom,
multiply(additive_identity,X) = additive_identity ).
cnf(right_multiplicative_zero,axiom,
multiply(X,additive_identity) = additive_identity ).
%----Existence of left additive additive_inverse
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
cnf(right_additive_inverse,axiom,
add(X,additive_inverse(X)) = additive_identity ).
%----Inverse of additive_inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Commutativity for addition
cnf(commutativity_for_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity for addition
cnf(associativity_for_addition,axiom,
add(X,add(Y,Z)) = add(add(X,Y),Z) ).
%----Right alternative law
cnf(right_alternative,axiom,
multiply(multiply(X,Y),Y) = multiply(X,multiply(Y,Y)) ).
%----Left alternative law
cnf(left_alternative,axiom,
multiply(multiply(X,X),Y) = multiply(X,multiply(X,Y)) ).
%----Associator
cnf(associator,axiom,
associator(X,Y,Z) = add(multiply(multiply(X,Y),Z),additive_inverse(multiply(X,multiply(Y,Z)))) ).
%----Commutator
cnf(commutator,axiom,
commutator(X,Y) = add(multiply(Y,X),additive_inverse(multiply(X,Y))) ).
%--------------------------------------------------------------------------