TPTP Axioms File: RNG002-0.ax
%--------------------------------------------------------------------------
% File : RNG002-0 : TPTP v9.0.0. Released v1.0.0.
% Domain : Ring Theory
% Axioms : Ring theory (equality) axioms
% Version : [PS81] (equality) axioms :
% Reduced & Augmented > Complete.
% English :
% Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
% Source : [ANL]
% Names :
% Status : Satisfiable
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 1 RR)
% Number of literals : 14 ( 14 equ; 0 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 25 ( 2 sgn)
% SPC :
% Comments : Not sure if these are complete. I don't know if the reductions
% given in [PS81] are suitable for ATP.
%--------------------------------------------------------------------------
%----Existence of left identity for addition
cnf(left_identity,axiom,
add(additive_identity,X) = X ).
%----Existence of left additive additive_inverse
cnf(left_additive_inverse,axiom,
add(additive_inverse(X),X) = additive_identity ).
%----Distributive property of product over sum
cnf(distribute1,axiom,
multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)) ).
cnf(distribute2,axiom,
multiply(add(X,Y),Z) = add(multiply(X,Z),multiply(Y,Z)) ).
%----Inverse of identity is identity, stupid
cnf(additive_inverse_identity,axiom,
additive_inverse(additive_identity) = additive_identity ).
%----Inverse of additive_inverse of X is X
cnf(additive_inverse_additive_inverse,axiom,
additive_inverse(additive_inverse(X)) = X ).
%----Behavior of 0 and the multiplication operation
cnf(multiply_additive_id1,axiom,
multiply(X,additive_identity) = additive_identity ).
cnf(multiply_additive_id2,axiom,
multiply(additive_identity,X) = additive_identity ).
%----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y)
cnf(distribute_additive_inverse,axiom,
additive_inverse(add(X,Y)) = add(additive_inverse(X),additive_inverse(Y)) ).
%----x * additive_inverse(y) = additive_inverse (x * y)
cnf(multiply_additive_inverse1,axiom,
multiply(X,additive_inverse(Y)) = additive_inverse(multiply(X,Y)) ).
cnf(multiply_additive_inverse2,axiom,
multiply(additive_inverse(X),Y) = additive_inverse(multiply(X,Y)) ).
%----Associativity of addition
cnf(associative_addition,axiom,
add(add(X,Y),Z) = add(X,add(Y,Z)) ).
%----Commutativity of addition
cnf(commutative_addition,axiom,
add(X,Y) = add(Y,X) ).
%----Associativity of product
cnf(associative_multiplication,axiom,
multiply(multiply(X,Y),Z) = multiply(X,multiply(Y,Z)) ).
%--------------------------------------------------------------------------